Mathematische Annalen

, Volume 369, Issue 3–4, pp 977–996 | Cite as

Dynamics of the Ericksen–Leslie equations with general Leslie stress I: the incompressible isotropic case

  • Matthias HieberEmail author
  • Jan Prüss


The Ericksen–Leslie model for nematic liquid crystals in a bounded domain with general Leslie and isotropic Ericksen stress tensor is studied in the case of a non-isothermal and incompressible fluid. This system is shown to be locally strongly well-posed in the \(L_p\)-setting, and a dynamical theory is developed. The equilibria are identified and shown to be normally stable. In particular, a local solution extends to a unique, global strong solution provided the initial data are close to an equilibrium or the solution is eventually bounded in the topology of the natural state manifold. In this case, the solution converges exponentially to an equilibrium, in the topology of the state manifold. The above results are proven without any structural assumptions on the Leslie coefficients and in particular without assuming Parodi’s relation.

Mathematics Subject Classification

35Q35 76A15 76D03 35K59 


  1. 1.
    Atkin, R., Sluchin, T., Stewart, I.W.: Reflections on the life and work of Frank Matthews Leslie. J. Non-Newton. Fluid Mech. 119, 7–23 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bothe, D., Prüss, J.: \(L^p\)-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39, 379–421 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chandrasekhar, S.: Liquid Crystals. Cambridge University Press, Cambridge (1992)Google Scholar
  4. 4.
    Coutand, D., Shkoller, S.: Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals. C. R. Acad. Sci. Paris Sér. I Math. 333, 919–924 (2001)Google Scholar
  5. 5.
    DeGennes, P.G., Prost, J.: The Physics of Liquid Crystals. Oxford University Press, Oxford (1995)Google Scholar
  6. 6.
    Denk, R., Hieber, M., Prüss, J.: \(\cal R\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc., 166 (2003)Google Scholar
  7. 7.
    Ericksen, J.L.: Hydrostatic theory of liquid crystals. Arch. Ratio. Mech. Anal. 9, 371–378 (1962)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Feireisl, E., Rocca, E., Schimperna, G.: On a non-isothermal model for nematic liquid crystals. Nonlinearity 24, 243–257 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Feireisl, E., Frémond, M., Rocca, E., Schimperna, G.: A new approach to non-isothermal models for nematic liquid crystals. Arch. Ration. Mech. Anal. 205, 651–672 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Feireisl, E., Rocca, E., Schimperna, G., Zarnescu, A.: Evolution of non-isothermal Landau-de Gemmes nematic liquid crystal flows with singular potential. arXiv:1207.1643
  11. 11.
    Feireisl, E., Rocca, E., Schimperna, G., Zarnescu, A.: Nonisothermal nematic liquid crystal flows with Ball-Majumdar free energy. arXiv:1310.8474
  12. 12.
    Frank, F.C.: On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28 (1958)CrossRefGoogle Scholar
  13. 13.
    Hieber, M., Nesensohn, M., Prüss, J., Schade, K.: Dynamics of nematic lquid crystals: the quasilinear approach. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 397–408 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hieber, M., Prüss, J.: Thermodynamic consistent modeling and analysis of nematic liquid crystal flows. In: Springer Proc. Math. and Statistics (2016) (to appear) Google Scholar
  15. 15.
    Hieber, M., Prüss, J.: Modeling and analysis of the Ericksen–Leslie equations for nematic liquid crystal flows. In: Giga, Y., Novotny, A. (eds.) Handbook of mathematical analysis in mechanics of viscous fluids. Springer, New York (to appear)Google Scholar
  16. 16.
    Hong, M., Li, J., Xin, Z.: Blow-up criteria of strong solutions to the Ericksen-Leslie system in \({\mathbb{R}}^3\). Comm. Partial Differ. Equ. 39, 1284–1328 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Huang, T., Lin, F., Liu, C., Wang, C.: Finite time singularities of the nematic liquid crystal flow in dimension three. Arch. Ration. Mech. Anal. 221, 1223–1254 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Huang, J., Lin, F., Wang, C.: Regularity and existence of global solutions to the Ericksen-Leslie system in \({\mathbb{R}}^2\). Comm. Math. Phys. 331, 805–850 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Köhne, M., Prüss, J., Wilke, M.: On quasilinear parabolic evolution equations in weighted \(L_p\)-spaces. J. Evol. Equ. 10, 443–463 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    LeCrone, J., Prüss, J., Wilke, M.: On quasilinear parabolic evolution equations in weighted \(L^p\)-spaces II. J. Evol. Equ. 14, 509–533 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lin, F.: Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Commun. Pure Appl. Math. 42, 789–814 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lin, F.: On nematic liquid crystals with variable degree of freedom. Commun. Pure Appl. Math. 44, 453–468 (1991)CrossRefzbMATHGoogle Scholar
  24. 24.
    Lin, F., Liu, Ch.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lin, F., Liu, Ch.: Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154, 135–156 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lin, F., Lin, J., Wang, C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lin, F., Wang, C.: Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. Lon. Ser. A, Math. Phys. Eng. Sci. 372, 20130361 (2014)Google Scholar
  28. 28.
    Ma, W., Gong, H., Li, J.: Global strong solutions to incompressible Ericksen-Leslie system in \({\mathbb{R}}^3\). Nonlinear Anal. 109, 230–235 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Oseen, C.W.: The theory of liquid crystals. Trans. Faraday Soc. 29, 883–899 (1933)CrossRefzbMATHGoogle Scholar
  30. 30.
    Parodi, O.: Stress tensor for a nematic liquid crystal. J. Physique 31, 581–584 (1970)CrossRefGoogle Scholar
  31. 31.
    Prüss, J.: Maximal regularity for evolution equations in \(L_p\)-spaces. Conf. Semin. Mat. Univ. Bari (2002) 285, 1–39 (2003)Google Scholar
  32. 32.
    Prüss, J., Simonett, G.: Maximal regularity for evolution equations in weighted \(L_p\)-spaces. Arch. Math. (Basel) 82, 415–431 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Prüss, J., Simonett, G.: Moving Interfaces and Quasilinear Parabolic Evolution Equations. Monographs in Mathematics, vol. 105. Birkhäuser Basel (2016). doi: 10.1007/978-3-319-27698-4
  34. 34.
    Prüss, J., Simonett, G., Zacher, R.: On convergence of solutions to equilibria for quasilinear parabolic problems. J. Differ. Equ. 246, 3902–3931 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Stewart, I.W.: The Static and Dynamic Continuum Theory of Liquid Crystals. The Liquid Crystal Book Series. Taylor and Francis, UK (2004)Google Scholar
  36. 36.
    Sun, H., Liu, Ch.: On energetic variational approaches in modeling the nematic liquid crystal flows. Disc. Cont. Dyn. Syst. 23, 455–475 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)CrossRefzbMATHGoogle Scholar
  38. 38.
    Virga, E.G.: Variational theories for liquid crystals. Chapman-Hall, London (1994)CrossRefzbMATHGoogle Scholar
  39. 39.
    Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200, 1–19 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wang, W., Zhang, P., Zhang, Z.: Well-posedness of the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 210, 837–855 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Wu, H., Xu, X., Liu, Ch.: On the general Ericksen-Leslie system: Parodi’s relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208, 59–107 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Technische Universität Darmstadt, Fachbereich MathematikDarmstadtGermany
  2. 2.607 Benedum Engineering HallUniversity of PittsburghPittsburghUSA
  3. 3.Institut für MathematikMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations