Skip to main content
Log in

Calculating differential Galois groups of parametrized differential equations, with applications to hypertranscendence

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The main motivation of our work is to create an efficient algorithm that decides hypertranscendence of solutions of linear differential equations, via the parameterized and differential Galois theories. To achieve this, we expand the representation theory of linear differential algebraic groups and develop new algorithms that calculate unipotent radicals of parameterized differential Galois groups for differential equations whose coefficients are rational functions. Berman and Singer presented an algorithm calculating the differential Galois group for differential equations without parameters whose differential operator is a composition of two completely reducible differential operators. We use their algorithm as a part of our algorithm. As a result, we find an effective criterion for the algebraic independence of the solutions of parameterized differential equations and all of their derivatives with respect to the parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arreche, C.: A Galois-theoretic proof of the differential transcendence of the incomplete Gamma function. J. Algebra 389, 119–127 (2013). doi:10.1016/j.jalgebra.2013.04.037

    Article  MathSciNet  MATH  Google Scholar 

  2. Arreche, C.: Computing the differential Galois group of a parameterized second-order linear differential equation. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC 2014, pp. 43–50. ACM Press, New York (2014). doi:10.1145/2608628.2608680

  3. Barkatou, M.: A fast algorithm to compute the rational solutions of systems of linear differential equations. In: Symbolic-numeric analysis of differential equations (1997)

  4. Berman, P.H., Singer, M.F.: Calculating the Galois group of \(L_1(L_2(y))=0\), \(L_1,L_2\) completely reducible operators. J Pure Appl. Algebra 139(1–3), 3–23 (1999). doi:10.1016/S0022-4049(99)00003-1

  5. Borel, A.: Properties and linear representations of Chevalley groups. In: Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics, vol. 131, pp. 1–55. Springer (1970). doi:10.1007/BFb0081542

  6. Borel, A.: Linear algebraic groups, 2nd enlarged edn. Springer, New York (1991). doi:10.1007/978-1-4612-0941-6

    Book  Google Scholar 

  7. Bourbaki, N.: Éléments de mathématique. Livre II: Algèbre. Chapitre VIII: Modules et anneaux semi-simples. Springer, Berlin (2012)

    MATH  Google Scholar 

  8. Cassidy, P.: Differential algebraic groups. American Journal of Mathematics 94, 891–954 (1972). http://www.jstor.org/stable/2373764

  9. Cassidy, P.: The differential rational representation algebra on a linear differential algebraic group. J. Algebra 37(2), 223–238 (1975). doi:10.1016/0021-8693(75)90075-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Cassidy, P.: Unipotent differential algebraic groups. In: Contributions to algebra: Collection of papers dedicated to Ellis Kolchin, pp. 83–115. Academic Press (1977)

  11. Cassidy, P.: The classification of the semisimple differential algebraic groups and linear semisimple differential algebraic Lie algebras. J. Algebra 121(1), 169–238 (1989). doi:10.1016/0021-8693(89)90092-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Cassidy, P., Singer, M.: A Jordan–Hölder theorem for differential algebraic groups. J. Algebra 328(1), 190–217 (2011). doi:10.1016/j.jalgebra.2010.08.019

    Article  MathSciNet  MATH  Google Scholar 

  13. Cassidy, P., Singer, M.F.: Galois theory of parametrized differential equations and linear differential algebraic group. IRMA Lect. Math. Theor. Phys. 9, 113–157 (2007). doi:10.4171/020-1/7

    MATH  Google Scholar 

  14. Deligne, P.: Catégories tannakiennes. In: The Grothendieck Festschrift, Volume II, Modern Birkhäuser Classics, pp. 111–195. Birkhäuser, Boston, MA (1990). http://dx.doi.org/10.1007/978-0-8176-4575-5

  15. Demazure, M., Gabriel, P.: Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Masson & Cie, Éditeur, Paris. Avec un appendice ıt Corps de classes local par Michiel Hazewinkel (1970)

  16. Di Vizio, L., Hardouin, C., Wibmer, M.: Difference algebraic relations among solutions of linear differential equations. Journal of the Institute of Mathematics of Jussieu (2015). http://dx.doi.org/10.1017/S1474748015000080

  17. Dreyfus, T.: Computing the Galois group of some parameterized linear differential equation of order two. Proc. Am. Math. Soc. 142, 1193–1207 (2014). doi:10.1090/S0002-9939-2014-11826-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Dreyfus, T., Hardouin, C., Roques, J.: Hypertranscendance of solutions of Mahler equations (2015). http://arxiv.org/abs/1507.03361. To appear in the Journal of the European Mathematical Society

  19. Feng, R.: Hrushovski’s algorithm for computing the Galois group of a linear differential equation. Adv. Appl. Math. 65, 1–37 (2015). doi:10.1016/j.aam.2015.01.001

    Article  MathSciNet  MATH  Google Scholar 

  20. Gillet, H., Gorchinskiy, S., Ovchinnikov, A.: Parameterized Picard-Vessiot extensions and Atiyah extensions. Adv. Math. 238, 322–411 (2013). doi:10.1016/j.aim.2013.02.006

    Article  MathSciNet  MATH  Google Scholar 

  21. Hardouin, C.: Unipotent radicals of Tannakian Galois groups in positive characteristic. In: Arithmetic and Galois theories of differential equations, Sémin. Congr., vol. 23, pp. 223–239. Soc. Math. France, Paris (2011)

  22. Hardouin, C., Singer, M.F.: Differential Galois theory of linear difference equations. Mathematische Annalen 342(2), 333–377 (2008). doi:10.1007/s00208-008-0238-z

    Article  MathSciNet  MATH  Google Scholar 

  23. van Hoeij, M.: Factorization of differential operators with rational functions coefficients. J. Symb. Comput. 24(5), 537–561 (1997). doi:10.1006/jsco.1997.0151

    Article  MathSciNet  MATH  Google Scholar 

  24. Hrushovski, E.: Computing the Galois group of a linear differential equation. In: Differential Galois theory (Bedlewo, 2001), Banach Center Publ., vol. 58, pp. 97–138. Polish Acad. Sci., Warsaw (2002). http://dx.doi.org/10.4064/bc58-0-9

  25. Humphreys, J.E.: Linear algebraic groups. Springer, New York (1975). doi:10.1007/978-1-4684-9443-3

    Book  MATH  Google Scholar 

  26. Kamensky, M.: Model theory and the Tannakian formalism. Trans. Am. Math. Soc. 367, 1095–1120 (2015). doi:10.1090/S0002-9947-2014-06062-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Kaplansky, I.: An introduction to differential algebra. Hermann, Paris (1957)

    MATH  Google Scholar 

  28. Kolchin, E.: Algebraic groups and algebraic dependence. Am. J. Math. 90(4), 1151–1164 (1968). doi:10.2307/2373294

    Article  MathSciNet  MATH  Google Scholar 

  29. Kolchin, E.: Differential algebra and algebraic groups. Academic Press, New York (1973)

    MATH  Google Scholar 

  30. Kurkova, I., Raschel, K.: On the functions counting walks with small steps in the quarter plane. Publications Mathématiques. Institut des Hautes Études Scientifiques 116(1), 69–114 (2012). doi:10.1007/s10240-012-0045-7

    Article  MATH  Google Scholar 

  31. Magid, A.: Lectures on differential galois theory. American Mathematical Society, Providence (1994)

    Book  MATH  Google Scholar 

  32. Marker, D.: Model theory of differential fields. In: Model theory, algebra, and geometry, Mathematical Sciences Research Institute Publications, vol. 39, pp. 53–63. Cambridge University Press, Cambridge (2000). http://library.msri.org/books/Book39/files/dcf.pdf

  33. Minchenko, A., Ovchinnikov, A.: Zariski closures of reductive linear differential algebraic groups. Adv. Math. 227(3), 1195–1224 (2011). doi:10.1016/j.aim.2011.03.002

    Article  MathSciNet  MATH  Google Scholar 

  34. Minchenko, A., Ovchinnikov, A.: Extensions of differential representations of \(SL_2\) and tori. J. Inst. Math. Jussieu 12(1), 199–224 (2013). doi:10.1017/S1474748012000692

    Article  MathSciNet  MATH  Google Scholar 

  35. Minchenko, A., Ovchinnikov, A., Singer, M.F.: Unipotent differential algebraic groups as parameterized differential Galois groups. J. Inst. Math. Jussieu 13(4), 671–700 (2014). doi:10.1017/S1474748013000200

    Article  MathSciNet  MATH  Google Scholar 

  36. Minchenko, A., Ovchinnikov, A., Singer, M.F.: Reductive linear differential algebraic group and the Galois groups of parametrized linear differential equations. Int. Math. Res. Notices 2015(7), 1733–1793 (2015). doi:10.1093/imrn/rnt344

    MATH  Google Scholar 

  37. Mitschi, C., Singer, M.F.: Monodromy groups of parameterized linear differential equations with regular singularities. Bull. Lond. Math. Soc. 44(5), 913–930 (2012). doi:10.1112/blms/bds021

    Article  MathSciNet  MATH  Google Scholar 

  38. Morales Ruiz, J.J.: ifferential Galois theory and non-integrability of Hamiltonian systems. Modern Birkhäuser Classics. Birkhäuser/Springer, Basel (1999). doi:10.1007/978-3-0348-8718-2

    Book  Google Scholar 

  39. Nagloo, J.: León Sánchez, O.: on parameterized differential Galois extensions. J. Pure Appl. Algebra 220(7), 2549–2563 (2016). doi:10.1016/j.jpaa.2015.12.001

    Article  MathSciNet  MATH  Google Scholar 

  40. Nguyen, P.: Hypertranscedance de fonctions de Mahler du premier ordre. C. R. Math. Acad. Sci. Paris 349(17–18), 943–946 (2011). doi:10.1016/j.crma.2011.08.021

    Article  MathSciNet  MATH  Google Scholar 

  41. Nishioka, K.: A note on differentially algebraic solutions of first order linear difference equations. Aequationes Mathematicae 27(1–2), 32–48 (1984). doi:10.1007/BF02192657

    Article  MathSciNet  MATH  Google Scholar 

  42. Ostrowski, A.: Sur les relations algébriques entre les intégrales indéfinies. Acta Mathematica 78, 315–318 (1946). doi:10.1007/BF02421605

    Article  MathSciNet  MATH  Google Scholar 

  43. Ovchinnikov, A.: Tannakian approach to linear differential algebraic groups. Transform. Groups 13(2), 413–446 (2008). doi:10.1007/s00031-008-9010-4

    Article  MathSciNet  MATH  Google Scholar 

  44. Ovchinnikov, A.: Tannakian categories, linear differential algebraic groups, and parametrized linear differential equations. Transform. Groups 14(1), 195–223 (2009). doi:10.1007/s00031-008-9042-9

    Article  MathSciNet  MATH  Google Scholar 

  45. van der Put, M., Singer, M.F.: Galois theory of linear differential equations. Springer-Verlag, Berlin (2003). http://dx.doi.org/10.1007/978-3-642-55750-7

  46. Randé, B.: Équations fonctionnelles de Mahler et applications aux suites \(p\)-régulières. Ph.D. thesis, Université Bordeaux I (1992). https://tel.archives-ouvertes.fr/tel-01183330

  47. Ritt, J.F.: Differential Algebra, vol. XXXIII. American Mathematical Society Colloquium Publications, New York (1950)

    Google Scholar 

  48. Singer, M.F.: Testing reducibility of linear differential operators: a group-theoretic perspective. Appl. Algebra Eng. Commun. Comput. 7(2), 77–104 (1996). doi:10.1007/BF01191378

    Article  MathSciNet  MATH  Google Scholar 

  49. Singer, M.F.: Linear algebraic groups as parameterized Picard-Vessiot Galois groups. J. Algebra 373, 153–161 (2013). doi:10.1016/j.jalgebra.2012.09.037

    Article  MathSciNet  MATH  Google Scholar 

  50. Springer, T.A.: Invariant Theory. Springer, Berlin (1977). doi:10.1007/BFb0095644

  51. Vinberg, E.B.: A Course in Algebra. American Mathematical Society, Providence (2003). doi:10.1090/gsm/056

    Book  MATH  Google Scholar 

  52. Waterhouse, W.C.: Introduction to affine group schemes, Graduate Texts in Mathematics. Springer, New York (1979). doi:10.1007/978-1-4612-6217-6

    Book  Google Scholar 

  53. Wibmer, M.: Existence of \(\partial \)-parameterized Picard-Vessiot extensions over fields with algebraically closed constants. J. Algebra 361, 163–171 (2012). doi:10.1016/j.jalgebra.2012.03.035

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Ovchinnikov.

Additional information

Communicated by Nalini Anantharaman.

This work was partially supported by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02, by ANR-10-JCJC 0105, by ANR JR-13-JS01-0002-0, by the NSF grants CCF-0952591 and DMS-1413859, by the NSA grant H98230-15-1-0245, by the ISF grant 756/12, and by the Minerva foundation with funding from the Federal German Ministry for Education and Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardouin, C., Minchenko, A. & Ovchinnikov, A. Calculating differential Galois groups of parametrized differential equations, with applications to hypertranscendence. Math. Ann. 368, 587–632 (2017). https://doi.org/10.1007/s00208-016-1442-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1442-x

Navigation