Mathematische Annalen

, Volume 367, Issue 3–4, pp 1099–1122 | Cite as

Affine and linear invariant families of harmonic mappings

  • Martin Chuaqui
  • Rodrigo Hernández
  • María J. Martín


We study the order of affine and linear invariant families of planar harmonic mappings in the unit disk. By using the famous shear construction of Clunie and Sheil-Small, we construct a function to determine the order of the family of mappings with bounded Schwarzian norm. The result shows that finding the order of the class \(\mathcal {S}_H\) of univalent harmonic mappings can be formulated as a question about Schwarzian norm and, in particular, our result shows consistency between the conjectured order of \(\mathcal {S}_H\) and the Schwarzian norm of the harmonic Koebe function.

Mathematics Subject Classification



  1. 1.
    Chuaqui, M., Duren, P.L., Osgood, B.: The Schwarzian derivative for harmonic mappings. J. Anal. Math. 91, 329–351 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chuaqui, M., Osgood, B.: Sharp distorsion theorems associated with the Schwarzian derivative. J. London Math. Soc. 48, 289–298 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Clunie, J., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A 9, 3–25 (1984)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Duren, P.L.: Univalent functions. Springer-Verlag, New York (1983)zbMATHGoogle Scholar
  5. 5.
    Duren, P.L.: Harmonic mappings in the plane. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Epstein, C.: The hyperbolic Gauss map and quasiconformal reflections. J. Reine Angew. Math. 372, 96–135 (1986)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Heins, M.: Some characterizations of finite Blaschke products of positive degree. J. Anal. Math. 46, 162–166 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hernández, R., Martín, M.J.: Stable geometric properties of analytic and harmonic functions. Math. Proc. Cambridge Philos. Soc. 155, 343–359 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hernández, R., Martín M. J.: Quasiconformal extensions of harmonic mappings, Ann. Acad. Sci. Fenn. Ser. A. I Math. 38, 617–630 (2013)Google Scholar
  10. 10.
    Hernández, R., Martín, M.J.: Pre-Schwarzian and Schwarzian derivatives of harmonic mappings. J. Geom. Anal. 25, 64–91 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hosokawa, T., Ohno, S.: Topological structures of the set of composition operators on the Bloch space. J. Math. Anal. Appl. 314, 736–748 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kraus, W.: Über den Zusammenhang einiger Charakteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung. Mitt. Math. Sem. Geissen 21, 1–28 (1932)zbMATHGoogle Scholar
  13. 13.
    Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Amer. Math. Soc. 42, 689–692 (1936)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Martín, M.J.: Hyperbolic distortion of conformal maps at corners. Constr. Approx. 30, 265–275 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nehari, Z.: The Schwarzian derivative and schlicht functions. Bull. Amer. Math. Soc. 55, 545–551 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nehari, Z.: A property of convex conformal maps. J. Anal. Math. 30, 390–393 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pommerenke, Ch.: Linear-invariante Familien analytischer Funktionen I. Math. Ann. 155, 108–154 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pommerenke, Ch.: Linear-invarinte Familien analytischer Funktionen II. Math. Ann. 156, 226–262 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ch. Pommerenke: Univalent functions. Vandenhoeck & Ruprecht, Göttingen (1975)Google Scholar
  20. 20.
    Sheil-Small, T.: Constants for planar harmonic mappings. J. London Math. Soc. 42, 237–248 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Martin Chuaqui
    • 1
  • Rodrigo Hernández
    • 2
  • María J. Martín
    • 3
  1. 1.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezViña del MarChile
  3. 3.Department of Physics and MathematicsUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations