Mathematische Annalen

, Volume 367, Issue 1–2, pp 623–666 | Cite as

Averaged projections, angles between groups and strengthening of Banach property (T)

  • Izhar OppenheimEmail author


Recently, Lafforgue introduced a new strengthening of Banach property (T), which he called strong Banach property (T) and showed that this property has implications regarding fixed point properties and Banach expanders. In this paper, we introduce a new strengthening of Banach property (T), called “robust Banach property (T)”, which is weaker than strong Banach property (T), but is still strong enough to ensure similar applications. Using the method of averaged projections in Banach spaces and introducing a new notion of angles between projections, we establish a criterion for robust Banach property (T) and show several examples of groups in which this criterion is fulfilled. We also derive several applications regarding fixed point properties and Banach expanders and give examples of these applications.

Mathematics Subject Classification

20F99 46B85 



The author would like to thank Mikael de la Salle, Mikhail Ershov and Simeon Reich for reading a previous draft of this paper and adding their insightful comments. Most of the work was done while the author was a visiting assistant professor at the Ohio State University and the author thanks the University for its hospitality.


  1. 1.
    Badea, C., Grivaux, S., Müller, V.: The rate of convergence in the method of alternating projections. Algebra i Analiz 23(3), 1–30 (2011). doi: 10.1090/S1061-0022-2012-01202-1 MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bader, U., Furman, A., Gelander, T., Monod, N.: Property (T) and rigidity for actions on Banach spaces. Acta Math. 198(1), 57–105 (2007). doi: 10.1007/s11511-007-0013-0 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bader, U., Gelander, T., Monod, N.: A fixed point theorem for \(L^1\) spaces. Invent. Math. 189(1), 143–148 (2012). doi: 10.1007/s00222-011-0363-2 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3(4), 459–470 (1977)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Druţu, C., Nowak, P.: Kazhdan projections, random walks and ergodic theorems. arXiv:1501.03473
  6. 6.
    Dymara, J., Januszkiewicz, T.: Cohomology of buildings and their automorphism groups. Invent. Math. 150(3), 579–627 (2002). doi: 10.1007/s00222-002-0242-y MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ershov, M., Jaikin-Zapirain, A.: Property (T) for noncommutative universal lattices. Invent. Math. 179(2), 303–347 (2010). doi: 10.1007/s00222-009-0218-2 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kassabov, M.: Subspace arrangements and property T. Groups Geom. Dyn. 5(2), 445–477 (2011). doi: 10.4171/GGD/134 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    de Laat, T., de la Salle, M.: Strong property (T) for higher-rank simple Lie groups. Proc. Lond. Math. Soc. (3) 111(4), 936–966 (2015). doi: 10.1112/plms/pdv040
  10. 10.
    Lafforgue, V.: Un renforcement de la propriété (T). Duke Math. J. 143(3), 559–602 (2008). doi: 10.1215/00127094-2008-029 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lafforgue, V.: Propriété (T) renforcée banachique et transformation de Fourier rapide. J. Topol. Anal. 1(3), 191–206 (2009). doi: 10.1142/S1793525309000163 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Liao, B.: Strong Banach property (T) for simple algebraic groups of higher rank. J. Topol. Anal. 6(1), 75–105 (2014). doi: 10.1142/S1793525314500010 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mimura, M.: Strong algebraization of fixed point properties (2014). arXiv:1505.06728
  14. 14.
    Ostrovskiĭ, M.I.: Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry. Quaest. Math. 17(3), 259–319 (1994)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pietsch, A.: History of Banach spaces and linear operators. Birkhäuser Boston Inc, Boston (2007)zbMATHGoogle Scholar
  16. 16.
    Pisier, G.: Some applications of the complex interpolation method to Banach lattices. J. Analyse Math. 35, 264–281 (1979). doi: 10.1007/BF02791068 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pisier, G., Xu, Q.H.: Random series in the real interpolation spaces between the spaces \(v_p\). In: Geometrical aspects of functional analysis (1985/86), Lecture Notes in Math., vol. 1267. Springer, Berlin, pp. 185–209 (1987). doi: 10.1007/BFb0078146
  18. 18.
    Pustylnik, E., Reich, S., Zaslavski, A.J.: Inner inclination of subspaces and infinite products of orthogonal projections. J. Nonlinear Convex Anal. 14(3), 423–436 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Salle, Md.l.: Towards strong Banach property (T) for SL(3, \({\mathbb{R}}\)). Israel J. Math. 211(1), 105–145 (2016). doi: 10.1007/s11856-015-1262-9

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations