Mathematische Annalen

, Volume 366, Issue 1–2, pp 573–611 | Cite as

Liftable vector fields over corank one multigerms

  • T. Nishimura
  • R. Oset Sinha
  • M. A. S. Ruas
  • R. Wik Atique
Article

Abstract

In this paper, a systematic method is given to construct all liftable vector fields over an analytic multigerm \(f:({\mathbb {K}}^n, S)\rightarrow ({\mathbb {K}}^p,0)\) of corank at most one admitting a one-parameter stable unfolding.

Mathematics Subject Classification

Primary 58K40 Secondary 57R45 58K20 

Notes

Acknowledgments

The authors would like to thank the reviewers for appropriate comments. They thank also Mohammed Salim Jbara Al-Bahadeli and Yusuke Mizota for their pointing out careless mistakes in the first draft of this paper.

References

  1. 1.
    Arnol’d, V.I.: Wave front evolution and equivariant Morse lemma. Commun. Pure Appl. Math. 29, 557–582 (1976)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps I (Monographs in Mathematics 82). Birkhäuser, Boston (1985)CrossRefGoogle Scholar
  3. 3.
    Bruce, J.W., Gaffney, T.J.: Simple singularities of mappings \({\mathbb{C}},0\rightarrow {\mathbb{C}}^{2},0\). J. Lond. Math. Soc. 26, 465–474 (1982)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bruce, J.W., West, J.M.: Functions on a crosscap. Math. Proc. Camb. Philos. Soc. 123, 19–39 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cooper, T., Mond, D., Wik Atique, R.: Vanishing topology of codimension 1 multi-germs over \({\mathbb{R}}\) and \({\mathbb{C}}\). Compositio Math. 131, 121–160 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Damon, J.: \({\cal A}\)-equivalence and the equivalence of sections of images and discriminants. In: Singularity Theory and its Applications, Part I (Coventry, 1988/1989), Lecture Notes in Mathematics, vol. 1462, pp. 93–121. Springer, Berlin (1991)Google Scholar
  7. 7.
    Gibson, C.G.: Singular points of smooth mappings. In: Research Notes in Mathematics, vol. 25, pp. iv+239. Pitman (Advanced Publishing Program), Boston, London (1979)Google Scholar
  8. 8.
    Hobbs, C.A., Kirk, N.: On the classification and bifurcation of multigerms of maps from surfaces to 3-space. Math. Scand. 89(1), 57–96 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Holland, M.P., Mond, D.: Stable mappings and logarithmic relative symplectic forms. Math. Z. 231, 605–623 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Houston, K.: Augmentation of singularities of smooth mappings. Int. J. Math. 15, 111–124 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Houston, K., Littlestone, D.: Vector fields liftable over corank 1 stable maps. arXiv:0905.0556 (2009)
  12. 12.
    Kolgushkin, P.A., Sadykov, R.R.: Simple singularities of multigerms of curves. Rev. Mat. Complut. 14, 311–344 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Looijenga, E.J.N.: Isolated Singular Points on Complete Intersections, London Mathematical Society Lecture Note Series, vol. 77. Cambridge University Press, Cambridge (1984)CrossRefGoogle Scholar
  14. 14.
    Mather, J.: Stability of \(C^{\infty }\) mappings, III. Finitely determined map-germs. Publ. Math. Inst. Hautes Études Sci. 35, 127–156 (1969)CrossRefMATHGoogle Scholar
  15. 15.
    Mather, J.: Stability of \(C^{\infty }\) mappings, IV, Classification of stable map-germs by \({\mathbb{R}}\)-algebras. Publ. Math. Inst. Hautes Études Sci. 37, 223–248 (1970)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mather, J.: Stability of \(C^{\infty }\)-mappings V. Transversality. Adv. Math. 4, 301–336 (1970)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mather, J.: Stability of \(C^{\infty }\)-mappings VI. The nice dimensions. Lect. Notes Math. 192, 207–253 (1971)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Mizota, Y., Nishimura, T.: Multicusps. In: Real and Complex Singularities, Contemporary Mathematics, vol. 569, pp. 115–121. American Mathematical Society, Providence (2012)Google Scholar
  19. 19.
    Mond, D.: On the classification of germs of maps from \({\mathbb{R}}^2\) to \({\mathbb{R}}^3\). Proc. Lond. Math. Soc. 50, 333–369 (1985)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Morin, B.: Formes canoniques des singularites d’une application differentiable. Comptes Rendus 260, 5662–5665, 6503–6506 (1965)Google Scholar
  21. 21.
    Nishimura, T.: \({\cal A}\)-simple multigerms and \({\cal L}\)-simple multigerms. Yokohama Math. J. 55, 93–104 (2010)MathSciNetMATHGoogle Scholar
  22. 22.
    Oset Sinha, R., Ruas, M.A.S., Wik Atique, R.: Classifying codimension two multigerms. Math. Z. 278, 547–573 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Oset Sinha, R., Ruas, M.A.S., Wik Atique, R.: On the simplicity of multigerms. Math. Scand. arXiv:1509.02688 (2015)
  24. 24.
    Rieger, J.H.: Families of maps from the plane to the plane. J. Lond. Math. Soc. 36, 351–369 (1987)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Rieger, J.H., Ruas, M.A.S.: Classification of \({\cal A}\)-simple germs from \({\mathbb{K}}^{n}\) to \({\mathbb{K}}^{2}\). Compositio Math. 79(1), 99–108 (1991)MathSciNetMATHGoogle Scholar
  26. 26.
    Rieger, J.H., Ruas, M.A.S., Wik Atique, R.: M-deformations of \({\cal A}\)-simple germs from \({\mathbb{R}}^n\) to \({\mathbb{R}}^{n+1}\). Math. Proc. Camb. Philos. Soc. 144, 181–195 (2008)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 265–291 (1980)MathSciNetMATHGoogle Scholar
  28. 28.
    Wall, C.T.C.: Finite determinacy of smooth map-germs. Bull. Lond. Math. Soc. 13, 481–539 (1981)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Whitney, H.: The general type of singularities of a set of \(2n-1\) smooth functions of \(n\) variables. Duke Math. J. 10, 161–172 (1943)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Whitney, H.: The singularities of a smooth \(n\)-manifold in \((2n-1)\)-space. Ann. Math. 45, 247–293 (1944)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Whitney, H.: On singularities of mappings of Euclidean spaces. Mappings of the plane to the plane. Ann. Math. 62, 374–410 (1955)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Wik Atique, R.: On the classification of multi-germs of maps from \({\mathbb{C}}^2\) to \({\mathbb{C}}^3\) under \({\cal A}\)-equivalence. In: Bruce, J.W., Tari, F. (eds.) Real and Complex Singularities, Research Notes in Maths Series, pp. 119–133. Chapman & Hall/CRC, Boca Raton (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • T. Nishimura
    • 1
  • R. Oset Sinha
    • 2
  • M. A. S. Ruas
    • 3
  • R. Wik Atique
    • 3
  1. 1.Research Group of Mathematical Sciences, Research Institute of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  2. 2.Departament de Geometria i TopologiaUniversitat de ValènciaValènciaSpain
  3. 3.ICMCUniversity of São PauloSão CarlosBrazil

Personalised recommendations