Mathematische Annalen

, Volume 365, Issue 3–4, pp 1559–1602 | Cite as

A spinorial energy functional: critical points and gradient flow

Article

Abstract

Let M be a compact spin manifold. On the universal bundle of unit spinors we study a natural energy functional whose critical points, if \(\dim M \ge 3\), are precisely the pairs \((g,{\varphi })\) consisting of a Ricci-flat Riemannian metric g together with a parallel g-spinor \({\varphi }\). We investigate the basic properties of this functional and study its negative gradient flow, the so-called spinor flow. In particular, we prove short-time existence and uniqueness for this flow.

References

  1. 1.
    Ammann, B., Moroianu, A., Moroianu, S.: The Cauchy problem for metrics with parallel spinors. Commun. Math. Phys. 320, 173–198 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ammann, B., Weiß, H., Witt, F.: The spinorial energy functional on surfaces. Math. Z (2015). doi:10.1007/s00209-015-1537-1
  3. 3.
    Ammann, B., Kröncke, K., Weiß, H., Witt, F.: Holonomy rigidity for Ricci flat metrics. In preparationGoogle Scholar
  4. 4.
    Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer, Berlin (1997)MATHGoogle Scholar
  5. 5.
    Bär, C.: Real killing spinors and holonomy. Commun. Math. Phys. 154(3), 509–521 (1993)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249(3), 545–580 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds, 124 Teubner-Texte zur Mathematik. Teubner, Stuttgart (1991)MATHGoogle Scholar
  8. 8.
    Besse, A.: Einstein Manifolds. Springer, Berlin (1987)CrossRefMATHGoogle Scholar
  9. 9.
    Bourguignon, J.-P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144(3), 581–599 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Boyer, C., Galicki, K.: 3-Sasakian Manifolds, Surveys in Differential Geometry: Essays on Einstein Manifolds, pp. 123–184, Int. Press, Boston (1999)Google Scholar
  11. 11.
    Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Diff. Geom. 6(1), 119–128 (1971)MathSciNetMATHGoogle Scholar
  12. 12.
    Conti, D., Salamon, S.: Reduced holonomy, hypersurfaces and extensions. Int. J. Geom. Methods Mod. Phys. 3(5–6), 899–912 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dai, X., Wang, X., Wei, G.: On the stability of Riemannian manifold with parallel spinors. Invent. Math. 161(1), 151–176 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    DeTurck, D.: Deforming metrics in the direction of their Ricci tensors. J. Differ. Geom. 28, 157–162 (1983)MathSciNetMATHGoogle Scholar
  15. 15.
    Ebin, D.: The manifold of Riemannian metrics. In: Proceedings of Symposium on Pure Mathematics, Vol. XV (Berkeley, Calif., 1968), pp. 11–40 Amer. Math. Soc., Providence, R.I. (1970)Google Scholar
  16. 16.
    Fernández, M., Gray, A.: Riemannian manifolds with structure group \({{\rm G_2}}\). Ann. Mat. Pura Appl. 132, 19–45 (1982)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fischer, A., Wolf, J.: The structure of compact Ricci-flat Riemannian manifolds. J. Differ. Geom. 10, 277–288 (1975)MathSciNetMATHGoogle Scholar
  18. 18.
    Friedrich, T.: On the spinor representation of surfaces in Euclidean 3-space. J. Geom. Phys. 28, 143–157 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Friedrich, T.: Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics 25. AMS, Providence (2000)Google Scholar
  20. 20.
    Friedrich, T., Kath, I.: Compact 5-dimensional Riemannian manifolds with parallel spinors. Math. Nachr. 147, 161–165 (1990)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Friedrich, T., Kath, I., Moroianu, A., Semmelmann, U.: On nearly parallel \({{\rm G_2}}\)-structures. J. Geom. Phys. 23, 259–286 (1997)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Goto, R.: Moduli spaces of topological calibrations, Calabi-Yau, hyper-Kähler, \({{\rm G_2}}\) and \({{\rm Spin}}(7)\) structures. Intern. J. Math. 15(3), 211–257 (2004)CrossRefMATHGoogle Scholar
  23. 23.
    Gray, A.: Weak holonomy groups. Math. Z. 123, 290–300 (1971)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hamilton, R.S., The Formation of Singularities in the Ricci Flow, Surveys in Differential Geometry, Vol. II (Cambridge, MA, 1993), PP. 7–136. Int. Press, Cambridge (1995)Google Scholar
  25. 25.
    Hermann, A.: Dirac eigenspinors for generic metrics. Ph.D. thesis, University of Regensburg. (arXiv:1201.5771) (2012)
  26. 26.
    Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Hitchin, N.: Stable forms and special metrics, global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), 70-89, Contemp. Math. 288, Amer. Math. Soc. Providence, RI (2001)Google Scholar
  28. 28.
    Kazdan, J.: Another proof of Bianchi’s identity in Riemannian geometry. Proc. Am. Math. Soc. 81(2), 341–342 (1981)MathSciNetMATHGoogle Scholar
  29. 29.
    Kosmann, Y.: Dérivées de Lie des spineurs. Ann. Math. Pura Appl. 91(4), 317–395 (1972)MathSciNetMATHGoogle Scholar
  30. 30.
    Ladyzhenskaya, O., Solonnikov, V., Uraltseva, N.: Linear and Quasilinear Parabolic Equations. Nauka, Moscow (1967)Google Scholar
  31. 31.
    Lawson, H., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, New Jersey (1989)MATHGoogle Scholar
  32. 32.
    Joyce, D.: Compact Manifolds with Special Holonomy. OUP, Oxford (2000)MATHGoogle Scholar
  33. 33.
    McInnes, B.: Methods of holonomy theory for Ricci-flat Riemannian manifolds. J. Math. Phys. 32(4), 888–896 (1991)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Moroianu, A., Semmelmann, U.: Parallel spinors and holonomy groups. J. Math. Phys. 41(4), 2395–2402 (2000)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Nordström, J.: Ricci-flat deformations of metrics with exceptional holonomy. Bull. Lond. Math. Soc. 45, 1004–1018 (2013)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Pfäffle, F.: The Dirac spectrum of Bieberbach manifolds. J. Geom. Phys. 35(4), 367–385 (2000)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Taylor, M.: Pseudodifferential Operators and Nonlinear PDE. Birkhäuser, Basel (1991)CrossRefMATHGoogle Scholar
  38. 38.
    Topping, P.: Lectures on the Ricci flow, LMS Lecture Note Series 325. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  39. 39.
    Wang, M.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7(1), 59–68 (1989)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Wang, M.: Preserving parallel spinors under metric deformations. Indiana Univ. Math. J. 40(3), 815–844 (1991)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Wang, M.: On non-simply connected manifolds with non-trivial parallel spinors. Ann. Global Anal. Geom. 13(1), 31–42 (1995)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Weiß, H., Witt, F.: A heat flow for special metrics. Adv. Math. 231(6), 3288–3322 (2012)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Weiß, H., Witt, F.: Energy functionals and soliton equations for \({{\rm G_2}}\)-forms. Ann. Global Anal. Geom. 42(4), 585–610 (2012)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany
  2. 2.Mathematisches Seminar der Universität KielKielGermany
  3. 3.Institut für Geometrie und Topologie der Universität StuttgartStuttgartGermany

Personalised recommendations