Mathematische Annalen

, Volume 363, Issue 3–4, pp 1307–1331 | Cite as

Functions with bounded variation on a class of Riemannian manifolds with Ricci curvature unbounded from below

  • Batu Güneysu
  • Diego PallaraEmail author


After establishing some new global facts (like a measure theoretic structure theorem and a new invariant characterization of Sobolev functions) about complex-valued functions with bounded variation on arbitrary noncompact Riemannian manifolds, we extend results of Miranda/the second author/Paronetto/Preunkert and of Carbonaro/Mauceri on the heat semigroup characterization of the variation of \(\mathsf {L}^1\)-functions to a class of Riemannian manifolds with possibly unbounded from below Ricci curvature.

Mathematics Subject Classification

26B30 53C21 47D06 58J35 



B. G. has been financially supported by the SFB 647: Raum-Zeit-Materie. D. P. is member of the Italian Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and has been partially supported by PRIN 2010 M.I.U.R. “Problemi differenziali di evoluzione: approcci deterministici e stocastici e loro interazioni”.


  1. 1.
    Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Comm. Pure Appl. Math. 35(2), 209–273 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford mathematical monographs. The Clarendon Press, Oxford University Press, New York (2000)Google Scholar
  3. 3.
    Ambrosio, L., Maniglia, S., Miranda, M., Pallara, D.: \({\sf BV}\) functions in abstract Wiener spaces. J. Funct. Anal. 258, 785–813 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Aubin, T.: Espaces de Sobolev sur les varits riemanniennes. Bull. Sci. Math. (2) 100(2), 149–173 (1976)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Baldi, A.: Weighted BV functions. Houston J. Math. 27(3), 683–705 (2001)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bakry, D.: Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée. Séminaire de Probabilités, XXI, 137–172, Lecture Notes in Math., vol. 1247. Springer, Berlin (1987)Google Scholar
  7. 7.
    Besse, A.L.: Einstein manifolds. Springer, Berlin (1987)zbMATHCrossRefGoogle Scholar
  8. 8.
    Broderix, K., Hundertmark, D., Leschke, H.: Continuity properties of Schrödinger semigroups with magnetic fields. Rev. Math. Phys. 12, 181–225 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Bramanti, M., Miranda, M., Pallara, D.: Two characterization of \({{\sf BV}}\) functions on Carnot groups via the heat semigroup. Int. Math. Res. Not. 17, 3845–3876 (2012)MathSciNetGoogle Scholar
  10. 10.
    Carbonaro, A., Mauceri, G.: A note on bounded variation and heat semigroup on Riemannian manifolds. Bull. Austral. Math. Soc. 76(1), 155–160 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Coulhon, T., Zhang, Q.: Large time behavior of heat kernels on forms. J. Differ. Geom. 77(3), 353–384 (2007)zbMATHMathSciNetGoogle Scholar
  12. 12.
    De Giorgi, E.: Su una teoria generale della misura \((r-1)\)-dimensionale in uno spazio ad \(r\) dimensioni. Ann. Mat. Pura Appl. 36 (1954), 191–213. Also. In: Ambrosio, L., Dal Maso, G., Forti, M., Miranda, M., Spagnolo, S. (eds.) Ennio De Giorgi: Selected Papers, pp. 79–99. Springer, Berlin (English translation, Ibid., 58–78) (2006)Google Scholar
  13. 13.
    Demuth, M., van Casteren, J.A.: Stochastic spectral theory for selfadjoint Feller operators. A functional integration approach. Probability and its applications. Birkhäuser Verlag, Basel (2000)Google Scholar
  14. 14.
    Dodziuk, J., Mathai, V.: Kato’s inequality and asymptotic spectral properties for discrete magnetic Laplacians. Contemp. Math., vol. 398, pp. 69–81. Amer. Math. Soc., Providence (2006)Google Scholar
  15. 15.
    Driver, B.K., Thalmaier, A.: Heat equation derivative formulas for vector bundles. J. Funct. Anal. 183(1), 42–108 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Fukushima, M., Hino, M.: On the space of BV functions and a related stochastic calculus in infinite dimensions. J. Funct. Anal. 183, 245–268 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Grigor’yan, A.: Heat kernel and analysis on manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, Providence, International Press, Boston (2009)Google Scholar
  18. 18.
    Güneysu, B.: Kato’s inequality and form boundedness of Kato potentials on arbitrary Riemannian manifolds. Proc. Am. Math. Soc. 142(4), 1289–1300 (2014)zbMATHCrossRefGoogle Scholar
  19. 19.
    Güneysu, B., Post. O.: Path integrals and the essential self-adjointness of differential operators on noncompact manifolds. Math. Z. 275, 331–348 (2013)Google Scholar
  20. 20.
    Güneysu, B.: On generalized Schrödinger semigroups. J. Funct. Anal. 262, 4639–4674 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Güneysu, B.: Nonrelativistic Hydrogen type stability problems on nonparabolic 3-manifolds. Ann. Henri Poincaré 13(7), 1557–1573 (2012)zbMATHCrossRefGoogle Scholar
  22. 22.
    Güneysu, B.: Sequences of Riemannian second order cut-off functions. J. Geom. Anal (2014) (to appear). doi: 10.1007/s12220-014-9543-9
  23. 23.
    Guidetti, D., Güneysu, B., Pallara, D.: \(L^1\) elliptic regularity and and \(H=W\) on the whole \(L^p\) scale on arbitrary manifolds. arXiv:1405.2654
  24. 24.
    Hebey, E.: Sobolev spaces on Riemannian manifolds. Lecture Notes in Mathematics, vol. 1635. Springer, Berlin (1996)Google Scholar
  25. 25.
    Hsu, E.: Stochastic analysis on manifolds. Graduate Studies in Mathematics, vol. 38. American Mathematical Society, Providence (2002)Google Scholar
  26. 26.
    Kato, T.: Schrödinger operators with singular potentials. Israel J. Math. 13(1–2), 135–148 (1972)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kuwae, K., Takahashi, M.: Kato class measures of symmetric Markov processes under heat kernel estimates. J. Funct. Anal. 250(1), 86–113 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Masamune, J.: Analysis of the Laplacian of an incomplete manifold with almost polar boundary. Rend. Mat. Appl. (7) 25(1), 109–126 (2005)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Meyers, N.G., Serrin, J.: H=W. Proc. Nat. Acad. Sci. USA 51, 1055–1056 (1964)Google Scholar
  30. 30.
    Milatovic, O.: Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs. Integral Equ. Oper. Theory 71(1), 13–27 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Milatovic, O.: On a positivity preservation property for Schrödinger operators on Riemannian manifolds. Proc. Am. Math. Soc (to appear). arXiv:1411.2991
  32. 32.
    Miranda Jr, M., Pallara, D., Paronetto, F., Preunkert, M.: Heat semigroup and functions of bounded variation on Riemannian manifolds. J. Reine Angew. Math. 613, 99–119 (2007)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Ouhabaz, E.M.: \(L^p\) contraction semigroups for vector valued functions. Positivity 3(1), 83–93 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Ouhabaz, E.M.: Analysis of heat equations on domains. London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005)Google Scholar
  35. 35.
    Pigola, S., Setti, A.G.: Global divergence theorems in nonlinear PDEs and geometry. Lecture Notes for the Summers School in Differential Geometry held in Fortaleza (2012)Google Scholar
  36. 36.
    Rudin, W.: Real and complex analysis. McGraw-Hill, Singapore (1987)zbMATHGoogle Scholar
  37. 37.
    Saloff-Coste, L.: Aspects of Sobolev-type inequalities. London Mathematical Society Lecture Note Series, vol. 289. Cambridge University Press, Cambridge (2002)Google Scholar
  38. 38.
    Shigekawa, I.: \(L^p\) contraction semigroups for vector valued functions. J. Funct. Anal. 147(1), 69–108 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Shubin, M.: Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds. J. Funct. Anal. 186(1), 92–116 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982)Google Scholar
  41. 41.
    Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures. Potential Anal. 5(2), 109–138 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Sturm, K.-T.: Schrödinger semigroups on manifolds. J. Funct. Anal. 118(2), 309–350 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Sznitman, A.-S.: Brownian motion, obstacles and random media. Springer monographs in mathematics. Springer, Berlin (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für MathematikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Dipartimento di Matematica e Fisica Ennio De GiorgiUniversità del SalentoLecceItaly

Personalised recommendations