Advertisement

Mathematische Annalen

, Volume 363, Issue 3–4, pp 1349–1398 | Cite as

Localization sequences for logarithmic topological Hochschild homology

  • John Rognes
  • Steffen Sagave
  • Christian Schlichtkrull
Article

Abstract

We study the logarithmic topological Hochschild homology of ring spectra with logarithmic structures and establish localization sequences for this theory. Our results apply, for example, to connective covers of periodic ring spectra like real and complex topological \(K\)-theory.

Mathematics Subject Classification

14F10 19D55 55P43 

Notes

Acknowledgments

The authors would like to thank the referee for useful comments.

References

  1. 1.
    Angeltveit, V., Rognes, J.: Hopf algebra structure on topological Hochschild homology. Algebr. Geom. Topol. 5, 1223–1290 (2005). (Electronic)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Ausoni, C.: Topological Hochschild homology of connective complex \(K\)-theory. Am. J. Math. 127(6), 1261–1313 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ausoni, C., Rognes, J.: Algebraic \(K\)-theory of topological \(K\)-theory. Acta Math. 188(1), 1–39 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ausoni, C., Rognes, J.: Algebraic \(K\)-theory of the first Morava \(K\)-theory. J. Eur. Math. Soc. (JEMS) 14(4), 1041–1079 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Barwick, C., Lawson, T.: Regularity of structured ring spectra and localization in \(K\)-theory (2014). arXiv:1402.6038
  6. 6.
    Blumberg, A.J., Mandell, M.A.: The localization sequence for the algebraic \(K\)-theory of topological \(K\)-theory. Acta Math. 200(2), 155–179 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Blumberg, A.J., Mandell, M.A.: Localization for THH(ku) and the topological Hochschild and cyclic homology of Waldhausen categories (2011). arXiv:1111.4003
  8. 8.
    Bökstedt, M., Madsen. I.: Topological cyclic homology of the integers. Astérisque (226):7–8, 57–143 (1994). \(K\)-theory (Strasbourg, 1992)Google Scholar
  9. 9.
    Bökstedt, M., Madsen, I.: Algebraic \(K\)-theory of local number fields: the unramified case. In: Prospects in Topology (Princeton, NJ, 1994), Ann. of Math. Studies, vol. 138, pp. 28–57. Princeton University Press, Princeton (1995)Google Scholar
  10. 10.
    Bousfield, A.K., Friedlander, E.M.: Homotopy theory of \(\Gamma \)-spaces, spectra, and bisimplicial sets. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math., vol. 658, pp. 80–130. Springer, Berlin (1978)Google Scholar
  11. 11.
    Dundas, B.I.: Relative \(K\)-theory and topological cyclic homology. Acta Math. 179(2), 223–242 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Elmendorf, A.D., Kriz, I., Mandell, M.A., May, J.P.: Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47. American Mathematical Society, Providence (1997) (with an appendix by M. Cole)Google Scholar
  13. 13.
    Friedlander, E.M., Mazur, B.: Filtrations on the homology of algebraic varieties. Mem. Am. Math. Soc. 110(529), x+110 (1994) (with an appendix by Daniel Quillen)Google Scholar
  14. 14.
    Grayson, D.: Higher algebraic \(K\)-theory. II (after Daniel Quillen). In: Algebraic \(K\)-Theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976). Lecture Notes in Math., vol. 551, pp. 217–240. Springer, Berlin (1976)Google Scholar
  15. 15.
    Hesselholt, L.: On the \(p\)-typical curves in Quillen’s \(K\)-theory. Acta Math. 177(1), 1–53 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hesselholt, L., Madsen, I.: On the \(K\)-theory of finite algebras over Witt vectors of perfect fields. Topology 36(1), 29–101 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hesselholt, L., Madsen, I.: On the \(K\)-theory of local fields. Ann. Math. (2) 158(1), 1–113 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Hirschhorn, P.S.: Model categories and their localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003)Google Scholar
  19. 19.
    Hovey, M., Shipley, B., Smith, J.: Symmetric spectra. J. Am. Math. Soc. 13(1), 149–208 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Kato, K.: Logarithmic structures of Fontaine-Illusie. Algebraic analysis. geometry, and number theory (Baltimore, MD, 1988). Johns Hopkins Univ. Press, Baltimore, pp. 191–224 (1989)Google Scholar
  21. 21.
    Loday, J.-L.: Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, 2nd edn. Springer, Berlin (1998) (Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili)Google Scholar
  22. 22.
    Mandell, M.A., May, J.P., Schwede, S., Shipley, B.: Model categories of diagram spectra. Proc. Lond. Math. Soc. (3) 82(2), 441–512 (2001)Google Scholar
  23. 23.
    McCarthy, R.: Relative algebraic \(K\)-theory and topological cyclic homology. Acta Math. 179(2), 197–222 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Quillen, D.: On the cohomology and \(K\)-theory of the general linear groups over a finite field. Ann. Math. 2(96), 552–586 (1972)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Quillen, D.: Higher algebraic \(K\)-theory. I. In: Algebraic \(K\)-theory, I: Higher \(K\)-Theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Lecture Notes in Math., vol. 341, pp. 85–147. Springer, Berlin (1973)Google Scholar
  26. 26.
    Rognes, J.: Topological logarithmic structures. In: New Topological Contexts for Galois Theory and Algebraic Geometry (BIRS 2008), Geom. Topol. Monogr., vol. 16, pp. 401–544. Geom. Topol. Publ., Coventry (2009)Google Scholar
  27. 27.
    Rognes, J., Sagave, S., Schlichtkrull, C.: Logarithmic topological Hochschild homology of topological \(K\)-theory spectra (2014). arXiv:1410.2170
  28. 28.
    Sagave, S.: Spectra of units for periodic ring spectra and group completion of graded \(E_{\infty }\) spaces (2013). arXiv:1111.6731
  29. 29.
    Sagave, S.: Logarithmic structures on topological \(K\)-theory spectra. Geom. Topol. 18, 447–490 (2014). (electronic)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Sagave, S., Schlichtkrull, C.: Diagram spaces and symmetric spectra. Adv. Math. 231(3–4), 2116–2193 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Sagave, S., Schlichtkrull, C.: Group completion and units in \({\cal I}\)-spaces. Algebr. Geom. Topol. 13(2), 625–686 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Schlichtkrull, C.: Thom spectra that are symmetric spectra. Doc. Math. 14, 699–748 (2009)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Schwede, S.: Symmetric spectra (2012). Book project. http://www.math.uni-bonn.de/people/schwede/
  34. 34.
    Shipley, B.: A convenient model category for commutative ring spectra. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic \(K\)-Theory, Contemp. Math., vol. 346, pp. 473–483. Amer. Math. Soc., Providence (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • John Rognes
    • 1
  • Steffen Sagave
    • 2
  • Christian Schlichtkrull
    • 3
  1. 1.Department of MathematicsUniversity of OsloOsloNorway
  2. 2.Department of Mathematics and InformaticsBergische Universität WuppertalWuppertalGermany
  3. 3.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations