Mathematische Annalen

, Volume 363, Issue 3–4, pp 913–951 | Cite as

The Calabi–Yau problem, null curves, and Bryant surfaces

Article

Abstract

In this paper we prove that every bordered Riemann surface \(M\) admits a complete proper null holomorphic embedding into a ball of the complex Euclidean 3-space \(\mathbb {C}^3\). The real part of such an embedding is a complete conformal minimal immersion \(M\rightarrow \mathbb {R}^3\) with bounded image. For any such \(M\) we also construct proper null holomorphic embeddings \(M\hookrightarrow \mathbb {C}^3\) with a bounded coordinate function; these give rise to properly embedded null curves \(M\hookrightarrow SL_2(\mathbb {C})\) and to properly immersed Bryant surfaces \(M\rightarrow \mathbb {H}^3\) in the hyperbolic 3-space. In particular, we provide the first examples of proper Bryant surfaces with finite topology and of hyperbolic conformal type. The main novelty when compared to the existing results in the literature is that we work with a fixed conformal structure on \(M\). This is accomplished by introducing a conceptually new method based on complex analytic techniques. One of our main tools is an approximate solution to certain Riemann-Hilbert boundary value problems for null curves in \(\mathbb {C}^3\), developed in Sect. 3.

Mathematics Subject Classification

53C42 32H02 53A10 32B15 

References

  1. 1.
    Alarcón, A., Fernández, I.: Complete minimal surfaces in \({\mathbb{R}}^3\) with a prescribed coordinate function. Differ. Geom. Appl. 29(suppl. 1), S9–S15 (2011)MATHCrossRefGoogle Scholar
  2. 2.
    Alarcón, A., Fernández, I., López, F.J.: Complete minimal surfaces and harmonic functions. Comment. Math. Helv. 87, 891–904 (2012)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Alarcón, A., Fernández, I., López, F.J.: Harmonic mappings and conformal minimal immersions of Riemann surfaces into \({\mathbb{R}}^N\). Calc. Var. Partial Differ. Equs. 47, 227–242 (2013)MATHCrossRefGoogle Scholar
  4. 4.
    Alarcón, A., Ferrer, L., Martín, F.: Density theorems for complete minimal surfaces in \({\mathbb{R}}^3\). Geom. Funct. Anal. 18, 1–49 (2008)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Alarcón, A., Forstnerič, F.: Every bordered Riemann surface is a complete proper curve in a ball. Math. Ann. 357, 1049–1070 (2013)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Alarcón, A., Forstnerič, F.: Null curves and directed immersions of open Riemann surfaces. Invent. Math. 196, 733–771 (2014)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Alarcón, A., López, F.J.: Minimal surfaces in \({\mathbb{R}}^3\) properly projecting into \({\mathbb{R}}^2\). J. Differ. Geom. 90, 351–382 (2012)MATHGoogle Scholar
  8. 8.
    Alarcón, A., López, F.J.: Null curves in \({\mathbb{C}}^3\) and Calabi–Yau conjectures. Math. Ann. 355, 429–455 (2013)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Alarcón, A., López, F.J.: Compact complete null curves in complex \(3\)-space. Israel J. Math. 195, 97–122 (2013)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Alarcón, A., López, F.J.: Proper holomorphic embeddings of Riemann surfaces with arbitrary topology into \({\mathbb{C}}^2\). J. Geom. Anal. 23, 1794–1805 (2013)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Alarcón, A., López, F.J.: Properness of associated minimal surfaces. Trans. Am. Math. Soc. 366, 5139–5154 (2014)MATHCrossRefGoogle Scholar
  12. 12.
    Alarcón, A.; López, F.J.: A complete bounded embedded complex curve in \({\mathbb{C}}^2\). J. Eur. Math. Soc. (JEMS). arXiv:1305.2118 (in press)
  13. 13.
    Bryant, R.: Surfaces of mean curvature one in hyperbolic space. Théorie des variétés minimales et applications (Palaiseau, 1983–1984). Astérisque 154–155 (1987), 12, 321–347, 353 (1988)Google Scholar
  14. 14.
    Calabi, E.: Problems in differential geometry. In: Kobayashi, S., Eells, Jr. J. (ed.)Proceedings of the United States–Japan Seminar in Differential Geometry, Kyoto, Japan, 1965. Nippon Hyoronsha Co., Ltd, Tokyo, p 170 (1966)Google Scholar
  15. 15.
    Colding, T.H., Minicozzi II, W.P.: The Calabi–Yau conjectures for embedded surfaces. Ann. Math. 2(167), 211–243 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Collin, P., Hauswirth, L., Rosenberg, H.: The geometry of finite topology Bryant surfaces. Ann. Math. 2(153), 623–659 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Černe, M.: Nonlinear Riemann-Hilbert problem for bordered Riemann surfaces. Am. J. Math. 126, 65–87 (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Drinovec Drnovšek, B., Forstnerič, F.: Holomorphic curves in complex spaces. Duke Math. J. 139, 203–254 (2007)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Drinovec Drnovšek, B., Forstnerič, F.: Minimal hulls of compact sets in \({\mathbb{R}}^3\). Preprint (2014). arXiv:1409.6906
  20. 20.
    Ferrer, L., Martín, F., Meeks III, W.H.: Existence of proper minimal surfaces of arbitrary topological type. Adv. Math. 231, 378–413 (2012)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Ferrer, L., Martín, F., Umehara, M., Yamada, K.: A construction of a complete bounded null curve in \({\mathbb{C}}^3\). Kodai Math. J. 37, 59–96 (2014)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Forstnerič, F.: Manifolds of holomorphic mappings from strongly pseudoconvex domains. Asian J. Math. 11, 113–126 (2007)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Forstnerič, F.: Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis). Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 56. Springer, Berlin (2011)Google Scholar
  24. 24.
    Forstnerič, F., Globevnik, J.: Proper holomorphic discs in \({\mathbb{C}}^2\). Math. Res. Lett. 8, 257–274 (2001)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Forstnerič, F., Wold, E.F.: Bordered Riemann surfaces in \({\mathbb{C}}^2\). J. Math. Pures Appl. 9(91), 100–114 (2009)CrossRefGoogle Scholar
  26. 26.
    Forstnerič, F., Wold, E.F.: Embeddings of infinitely connected planar domains into \({\mathbb{C}}^2\). Anal. PDE 6, 499–514 (2013)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Globevnik, J.: A complete complex hypersurface in the ball of \({\mathbb{C}}^N\). Preprint (2014). arXiv:1401.3135
  28. 28.
    Hoffman, D., Meeks III, W.H.: The strong halfspace theorem for minimal surfaces. Invent. Math. 101, 373–377 (1990)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Jones, P.W.: A complete bounded complex submanifold of \({\mathbb{C}}^3\). Proc. Am. Math. Soc. 76, 305–306 (1979)MATHGoogle Scholar
  30. 30.
    Jorge, L.P., Xavier, F.: A complete minimal surface in \({\mathbb{R}}^3\) between two parallel planes. Ann. Math. 2(112), 203–206 (1980)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lawson, B.: Complete minimal surfaces in \(S^3\). Ann. Math. 2(92), 335–374 (1970)CrossRefGoogle Scholar
  32. 32.
    Martín, F.; Umehara, M.; Yamada, K.: Complete bounded null curves immersed in \({\mathbb{C}}^3\) and \(SL(2,{\mathbb{C}})\). Calc. Var. Partial Differential Equations 36, 119–139 (2009). Erratum: Complete bounded null curves immersed in \({\mathbb{C}}^3\) and \(SL(2,{\mathbb{C}})\). Calc. Var. Partial Differ. Equs. 46, 439–440 (2013)Google Scholar
  33. 33.
    Martín, F., Umehara, M., Yamada, K.: Complete bounded holomorphic curves immersed in \({\mathbb{C}}^2\) with arbitrary genus. Proc. Am. Math. Soc. 137, 3437–3450 (2009)MATHCrossRefGoogle Scholar
  34. 34.
    Meeks III, W.H: Global Problems in Classical Minimal Surface Theory. Global Theory of Minimal Surfaces. Clay Math. Proc. 2, Am. Math. Soc., Providence (2005)Google Scholar
  35. 35.
    Meeks III, W.H., Pérez, J.: Ros, A.: The embedded Calabi–Yau conjectures for finite genus. http://www.ugr.es/~jperez/papers/papers.htm
  36. 36.
    Morales, S.: On the existence of a proper minimal surface in \({\mathbb{R}}^3\) with a conformal type of disk. Geom. Funct. Anal. 13, 1281–1301 (2003)MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Nadirashvili, N.: Hadamard’s and Calabi–Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math. 126, 457–465 (1996)MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Osserman, R.: A Survey of Minimal Surfaces, 2nd edn. Dover Publications Inc, New York (1986)Google Scholar
  39. 39.
    Rosenberg, H.: Bryant surfaces. In: The global theory of minimal surfaces in flat spaces (Martina Franca, 1999), pp. 67–111. Lecture Notes in Math., 1775, Springer, Berlin (2002)Google Scholar
  40. 40.
    Umehara, M., Yamada, K.: Complete surfaces of constant mean curvature \(1\) in the hyperbolic \(3\)-space. Ann. Math. 2(137), 611–638 (1993)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Yang, P.: Curvatures of complex submanifolds of \({\mathbb{C}}^n\). J. Differ. Geom. 12, 499–511 (1977)MATHGoogle Scholar
  42. 42.
    Yang, P.: Curvature of Complex Submanifolds of \({\mathbb{C}}^n\). Proc. Sympos. Pure Math., vol. 30, part 2, pp. 135–137. Amer. Math. Soc., Providence (1977)Google Scholar
  43. 43.
    Yau, S.T.: Problem section, Seminar on Differential Geometry. Ann. of Math. Studies, vol. 102, pp. 669–706. Princeton University Press, Princeton (1982)Google Scholar
  44. 44.
    Yau, S.T.: Review of geometry and analysis. Mathematics: frontiers and perspectives. pp. 353–401. Amer. Math. Soc., Providence, R.I. (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Departamento de Geometría y TopologíaUniversidad de GranadaGranadaSpain
  2. 2.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia

Personalised recommendations