Mathematische Annalen

, Volume 360, Issue 3–4, pp 675–680 | Cite as

The prescribed scalar curvature problem for metrics with unit total volume

Article

Abstract

We solve the modified Kazdan–Warner problem of finding metrics with prescribed scalar curvature and unit total volume.

Mathematics Subject Classification (1991)

Primary 53C25 Secondary 53C21 

References

  1. 1.
    Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55(3), 269–296 (1976)MathSciNetMATHGoogle Scholar
  2. 2.
    Bourguignon, J.P.: Une stratification de l’espace des structures riemanniennes. Compos. Math. 30, 1–41 (1975)MathSciNetMATHGoogle Scholar
  3. 3.
    Corvino, J., Eichmair, M., Miao, P.: Deformation of scalar curvature and volume. Math. Ann. 357(2), 551–584 (2013)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Kazdan, J.L., Warner, F.A.: A direct approach to the determination of Gaussian and scalar curvature functions. Invent. Math. 28, 227–230 (1975)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Kazdan, J.L., Warner, F.W.: Scalar curvature and conformal deformation of Riemannian structure. J. Differ. Geom. 10, 113–134 (1975)MathSciNetMATHGoogle Scholar
  6. 6.
    Kobayashi, O.: Scalar curvature of a metric with unit volume. Math. Ann. 279(2), 253–265 (1987)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Kobayashi, O.: Scalar curvature of spheres. Math. Z. 200(2), 273–277 (1989)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Koiso, N.: A decomposition of the space \({\cal M}\) of Riemannian metrics on a manifold. Osaka J. Math. 16(2), 423–429 (1979)MathSciNetMATHGoogle Scholar
  9. 9.
    Koiso, N.: Einstein metrics and complex structures. Invent. Math. 73(1), 71–106 (1983)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Schoen, R.M.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Topics in Calculus of Variations (Montecatini Terme, 1987), Lecture Notes in Math., vol. 1365, pp. 120–154. Springer, Berlin (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsOsaka UniversityToyonakaJapan

Personalised recommendations