Mathematische Annalen

, Volume 358, Issue 1–2, pp 143–168 | Cite as

Birational geometry of O’Grady’s six dimensional example over the Donaldson–Uhlenbeck compactification

  • Yasunari Nagai


We determine the birational geometry of O’Grady’s six dimensional example over the Donaldson–Uhlenbeck compactification, by looking at the locus of non-locally-free sheaves on the relevant moduli space.

Mathematics Subject Classification (2000)

14J60 37J35 



The author would like to thank Manfred Lehn for his suggestions. Several crucial ideas came out of the discussions with him. He would also like to thank Arvid Perego for stimulating discussions. The author is supported by Grant-in-Aid for Young Scientists (B) 22740004, the Ministry of Education, Culture, Sports, Science and Technology, Japan. At the time of writing the article, he was a member of Global COE program of Graduate School of Mathematics, the University of Tokyo.


  1. 1.
    Greuel, G.-M., Pfister, G., Schönemann, H.: Singular— a computer algebra system for polynomial computations (2009).
  2. 2.
    Huybrechts, D., Lehn, M.: The geometry of moduli spaces of sheaves. Aspects of Mathematics, E31. Friedr. Vieweg & Sohn, Braunschweig (1997)Google Scholar
  3. 3.
    Kollár, J., Mori, S.: Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics. vol 134. Cambridge University Press, Cambridge (1998). With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese originalGoogle Scholar
  4. 4.
    Kraft, H.: Klassische Invariantentheorie. Eine Einführung, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., vol. 13, , pp. 41-62. Birkhäuser, Basel (1989) (German)Google Scholar
  5. 5.
    Lehn, M., Sorger, C.: La singularité de O’Grady: J. Algebraic Geom. 15(4), 753–770 (2006) (French, with English and French summaries)Google Scholar
  6. 6.
    Mukai, S.: Duality between D(X) and \(\text{ D }(\hat{X})\) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Mukai, S.: Fourier functor and its application to the moduli of bundles on an abelian variety, Algebraic geometry, Sendai (1985). Advanced Studies in Pure Mathematics, vol. 10, pp. 515-550. North- Holland, Amsterdam (1987)Google Scholar
  8. 8.
    Mumford, D.: Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay (1970)Google Scholar
  9. 9.
    Nagai, Y.: Non-locally-free locus of O’Grady’s ten dimensional example. arXiv:1007.1544 (preprint, 2010)Google Scholar
  10. 10.
    O’Grady, K.G.: Desingularized moduli spaces of sheaves on a K3. J. Reine Angew. Math. 512, 49-117 (1999). doi: 10.1515/crll.1999.056 Google Scholar
  11. 11.
    O’Grady, K.G.: A new six-dimensional irreducible symplectic variety. J. Algebraic Geom. 12(3), 435–505 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Perego, A.: The 2-factoriality of the O’Grady moduli spaces. Math. Ann. 346(2), 367–391 (2010). doi: 10.1007/s00208-009-0402-0 CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Popov, V.L., Vinberg, E.B.: Invariant theory. In: Shafarevich, I.R. (ed.) Algebraic geometry. IV. Encyclopaedia of Mathematical Sciences, vol. 55. Springer, Berlin (1994). English translation from Russian edition (1989)Google Scholar
  14. 14.
    Rapagnetta, A.: Topological invariants of O’Grady’s six dimensional irreducible symplectic variety. Math. Z. 256(1), 1–34 (2007). doi: 10.1007/s00209-006-0022-2 CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Wierzba, J.: Contractions of symplectic varieties. J. Algebraic Geom. 12(3), 507–534 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321(4), 817–884 (2001). doi: 10.1007/s002080100255 CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesThe University of TokyoTokyoJapan
  2. 2.Department of Mathematics, Faculty of Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations