Advertisement

Mathematische Annalen

, Volume 358, Issue 1–2, pp 1–24 | Cite as

Principal graph stability and the jellyfish algorithm

  • Stephen Bigelow
  • David Penneys
Article

Abstract

We show that if the principal graph of a subfactor planar algebra of modulus \(\delta >2\) is stable for two depths, then it must end in \(A_{ finite }\) tails. This result is analogous to Popa’s theorem on principal graph stability. We use these theorems to show that an \(n-1\) supertransitive subfactor planar algebra has jellyfish generators at depth \(n\) if and only if its principal graph is a spoke graph. This is the published version of arxiv:1208.1564.

Mathematics Subject Classification (2000)

Primary 46L37 Secondary 18D05 57M20 

Notes

Acknowledgments

The authors would like to thank Vaughan Jones, Scott Morrison, and Sorin Popa for many helpful conversations. David Penneys was supported by NSF grant DMS-0856316 and DOD-DARPA grants HR0011-11-1-0001 and HR0011-12-1-0009.

References

  1. 1.
    Asaeda, M., Haagerup, U.: Exotic subfactors of finite depth with Jones indices \((5+\sqrt{13})/2\) and \((5+\sqrt{17})/2\). Comm. Math. Phys. 202(1), 1–63 (1999). arXiv:math.OA/9803044. doi: 10.1007/s002200050574
  2. 2.
    Brouwer, A.E., Haemers, W.H.: Spectra of graphs (2012). http://www.win.tue.nl/~aeb/2WF02/spectra.pdf
  3. 3.
    Bigelow, S., Morrison, S., Peters, E., Snyder, N.: Constructing the extended Haagerup planar algebra. Acta Math. 209(1), 29–82 (2012). arXiv:0909.4099. doi: 10.1007/s11511-012-0081-7 Google Scholar
  4. 4.
    Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and towers of algebras. Mathematical Sciences Research Institute Publications, vol. 14, Springer, New York (1989)Google Scholar
  5. 5.
    Haagerup, U.: Principal graphs of subfactors in the index range 4 \(<[M:N]<3+\sqrt{2}\). Subfactors (Kyuzeso, 1993), pp. 1–38. World Science Publication, River Edge, NJ (1994)Google Scholar
  6. 6.
    Han, R.: A construction of the “2221” planar algebra. Ph.D. thesis, University of California, Riverside (2010). arXiv:1102.2052Google Scholar
  7. 7.
    Izumi, M., Jones, V.F.R., Morrison, S., Snyder, N.: Subfactors of index less than 5, Part 3: Quadruple points. Comm. Math. Phys. 316(2), 531–554 (2012). arXiv:1109.3190. doi: 10.1007/s00220-012-1472-5 Google Scholar
  8. 8.
    Izumi, M., Kawahigashi, Y.: Classification of subfactors with the principal graph \(D_{n}^{(1)}\). J. Funct. Anal. 112(2), 257–286 (1993). doi: 10.1006/jfan.1993.1033
  9. 9.
    Jones, V.F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983). doi: 10.1007/BF01389127 Google Scholar
  10. 10.
    Jones, V.F.R.: Subfactors of \({II}_1\) factors and related topics. Proceedings of the International Congress of Mathematicians (Berkeley), pp. 939–947 (1986)Google Scholar
  11. 11.
    Jones, V.F.R.: The annular structure of subfactors. Essays on geometry and related topics, vol. 1, 2, Monogr. Enseign. Math., vol. 38, Enseignement Math., Geneva, pp. 401–463 (2001)Google Scholar
  12. 12.
    Jones, V.F.R.: Quadratic tangles in planar algebras. Duke. Math. J. 161(12), 2257–2295. doi: 10.1215/00127094-1723608
  13. 13.
    Jones, V.F.R.: Notes on planar algebras. http://math.berkeley.edu/~vfr/VANDERBILT/pl21.pdf (2011)
  14. 14.
    Jones, V.F.R., Penneys, D.: The embedding theorem for finite depth subfactor planar algebras. Quantum Topol. 2(3), 301–337 (2011). arXiv:1007.3173. doi: 10.4171/QT/23 Google Scholar
  15. 15.
    Morrison, S., Penneys, D.: The affine A and D planar algebras (2012) In preparationGoogle Scholar
  16. 16.
    Morrison, S., Penneys, D.: Constructing spoke subfactors using the jellyfish algorithm (2012). arXiv:1208.3637, to appear in Trans. Am. Math. Soc.Google Scholar
  17. 17.
    Morrison, S., Peters, E.: The little desert? Some subfactors with index in the interval \((5,3+\sqrt{5})\). (2012). arXiv:1205.2742Google Scholar
  18. 18.
    Morrison, S., Penneys, D., Peters, E., Snyder, N.: Classification of subfactors of index less than 5, part 2: triple points. Int. J. Math. 23(3), 1250016 (2012). arXiv:1007.2240. doi: 10.1142/S0129167X11007586 Google Scholar
  19. 19.
    Morrison, Scott, Peters, E., Snyder, N.: Skein theory for the \({\cal D}_{2n}\) planar algebras. J. Pure Appl. Algebra 214(2), 117–139 (2010). arXiv:math/0808.0764. doi: 10.1016/j.jpaa.2009.04.010
  20. 20.
    Morrison, S., Snyder, N.: Subfactors of index less than 5, part 1: the principal graph odometer. Commun. Math. Phys. 312(1), 1–35 (2012). arXiv:1007.1730. doi: 10.1007/s00220-012-1426-y Google Scholar
  21. 21.
    Morrison, S., Walker, K.: Planar algebras, connections, and Turaev-Viro theory. preprint available at http://tqft.net/tvc
  22. 22.
    Mohar, B., Woess, W.: A survey on spectra of infinite graphs. Bull. Lond. Math. Soc. 21(3), 209–234 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Peters, E.: A planar algebra construction of the Haagerup subfactor. Int. J. Math. 21(8), 987–1045 (2010). arXiv:0902.1294. doi: 10.1142/S0129167X10006380 Google Scholar
  24. 24.
    Popa, S.: Classification of amenable subfactors of type II. Acta Math. 172(2), 163–255 (1994). doi: 10.1007/BF02392646 Google Scholar
  25. 25.
    Popa, S.: An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math. 120(3), 427–445 (1995). doi: 10.1007/BF01241137 Google Scholar
  26. 26.
    Popa, S.: Some ergodic properties for infinite graphs associated with subfactors. Ergodic Theory Dynam. Syst. 15(5), 993–1003 (1995). doi: 10.1017/S0143385700009731
  27. 27.
    Penneys, D., Tener, J.: Classification of subfactors of index less than 5, part 4: vines. Int. J. Math. 23(3), 1250017 (18 pages) (2012). arXiv:1010.3797. doi: 10.1142/S0129167X11007641 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of California, Santa BarbaraSanta BarbaraUSA
  2. 2.University of TorontoTorontoCanada

Personalised recommendations