Mathematische Annalen

, Volume 356, Issue 4, pp 1425–1454 | Cite as

Stability of Kähler-Ricci flow on a Fano manifold

Article

Abstract

Let \((M,J)\) be a Fano manifold which admits a Kähler-Einstein metric \(g_{KE}\) (or a Kähler-Ricci soliton \(g_{KS}\)). Then we prove that Kähler-Ricci flow on \((M,J)\) converges to \(g_{KE}\) (or \(g_{KS}\)) in \(C^\infty \) in the sense of Kähler potentials modulo holomorphisms transformation as long as an initial Kähler metric of flow is very closed to \(g_{KE}\) (or \(g_{KS}\)). The result improves Main Theorem in [14] in the sense of stability of Kähler-Ricci flow.

Mathematics Subject Classification (1991)

Primary 53C25; Secondary 53C55 58E11 

References

  1. 1.
    Bando, S., Mabuchi, T.: Uniqueness of Kähler Einstein metrics modulo connected group actions, Algebraic Geometry, Adv. Stud. Pure Math., pp. 11–40 (1987)Google Scholar
  2. 2.
    Cao, H.D.: Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Chen, X.X., Tian, G.: Ricci flow on Kähler-Einstein surfaces. Invent. Math. 147, 487–544 (2002)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cao, H.D., Tian, G., Zhu, X.H.: Kähler-Ricci solitons on compact Kähler manifolds with \(c_1(M)>0\). Geom. Funct. Anal. 15, 697–619 (2005)Google Scholar
  5. 5.
    Hamilton, R.S.: Three manifolds with positive Ricci curvature. J. Diff. Geom. 17, 255–306 (1982)MathSciNetMATHGoogle Scholar
  6. 6.
    Phong, D., Strum, J.: On the stability and convergence of the Kähler-Ricci flow. J. Diff. Geom. 72, 149–168 (2006)MATHGoogle Scholar
  7. 7.
    Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler-Ricci flow and the \(\overline{\partial }\) operator on vector fields. J. Diff. Geom. 81, 631–647 (2009)MathSciNetMATHGoogle Scholar
  8. 8.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159Google Scholar
  9. 9.
    Sesum, N.: Convergence of a Kähler-Ricci flow. Math. Res. Lett. 12, 623–632 (2005)MathSciNetMATHGoogle Scholar
  10. 10.
    Sesum, N., Tian, G.: Bounding scalar curvature and diameter along the Kähler-Ricci flow (after Perelman). J. Inst. Math. Jussieu 7, 575–587 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Sun, S., Wang, Y.: On Kähler-Ricci flow near a Kähler-Einstein metric, arXiv:1004.2018, 2010Google Scholar
  12. 12.
    Tian, G., Zhu, X.H.: Uniqueness of Kähler-Ricci solitons. Acta Math. 184, 271–305 (2000)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Tian, G., Zhu, X.H.: A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Comm. Math. Helv. 77, 297–325 (2002)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Tian, G., Zhu, X.H.: Convergence of Kähler-Ricci flow. J. Am. Math. Soc. 20, 675–699 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Tian, G., Zhu, X.H.: Convergence of Kähler-Ricci flow on Fano manifolds, II, arxiv:1102.4798v1, to appear in J. Reine Angew. MathGoogle Scholar
  16. 16.
    Tian, G., Zhang, S.J., Zhang, Z.L., Zhu, X.H.: Perelman’s entropy and Kähler-Ricci flow on a Fano manifold, to appear in Tran. AMSGoogle Scholar
  17. 17.
    Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31, 339–411 (1978)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Zhu, X.H.: Kähler-Ricci soliton type equations on compact complex manifolds with \(C_1(M)>0\). J. Geom. Anal. 10, 759–774 (2000)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Zhu, X.H.: Stability on Kähler-Ricci flow on a compact Kähler manifold with positive first Chern class, I, Arxiv/0908.1488v1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsPeking UniversityBeijingChina

Personalised recommendations