Mathematische Annalen

, Volume 355, Issue 4, pp 1383–1423 | Cite as

\(C^*\)-algebras of Toeplitz type associated with algebraic number fields

  • Joachim Cuntz
  • Christopher Deninger
  • Marcelo Laca
Article

Abstract

We associate with the ring \(R\) of algebraic integers in a number field a C*-algebra \({\mathfrak T }[R]\). It is an extension of the ring C*-algebra \({\mathfrak A }[R]\) studied previously by the first named author in collaboration with X. Li. In contrast to \({\mathfrak A }[R]\), it is functorial under homomorphisms of rings. It can also be defined using the left regular representation of the \(ax+b\)-semigroup \(R\rtimes R^\times \) on \(\ell ^2 (R\rtimes R^\times )\). The algebra \({\mathfrak T }[R]\) carries a natural one-parameter automorphism group \((\sigma _t)_{t\in {\mathbb R }}\). We determine its KMS-structure. The technical difficulties that we encounter are due to the presence of the class group in the case where \(R\) is not a principal ideal domain. In that case, for a fixed large inverse temperature, the simplex of KMS-states splits over the class group. The “partition functions” are partial Dedekind \(\zeta \)-functions. We prove a result characterizing the asymptotic behavior of quotients of such partial \(\zeta \)-functions, which we then use to show uniqueness of the \(\beta \)-KMS state for each inverse temperature \(\beta \in (1,2]\).

Mathematics Subject Classification (2000)

Primary 22D25 46L89 11R04 11M55 

References

  1. 1.
    Bost, J.-B., Connes, A.: Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory. Sel. Math. (N.S.) 1(3), 411–457 (1995)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bourbaki, N.: Commutative algebra. In: Elements of Mathematics (Berlin), chapters 1–7. Springer, Berlin (1989, translated from the French, reprint of the 1972 edition)Google Scholar
  3. 3.
    Bratteli, O., Robinson D.W.: Operator algebras and quantum statistical mechanics. 2. Texts and monographs in physics. In: Equilibrium States. Models in Quantum Statistical Mechanics, 2nd edn. Springer, Berlin (1997)Google Scholar
  4. 4.
    Cuntz, J.: \(C^*\)-algebras associated with the \(ax+b\)-semigroup over \({\mathbb{N}}\). In: Cortiñas, G. et al. (eds) \(K\)-theory and noncommutative geometry. Proceedings of the ICM.: satellite conference, Valladolid, Spain, August 31–September 6, 2006. European Mathematical Society (EMS), Zürich. Series of Congress Reports, 201–215 (2008) Google Scholar
  5. 5.
    Cuntz, J., Li, X.: The regular \(C^{\ast }\)-algebra of an integral domain. Clay Math. Proc. 10, 149–170 (2010)MathSciNetGoogle Scholar
  6. 6.
    Cuntz, J., Li, X.: C*-algebras associated with integral domains and crossed products by actions on adele spaces. J. Noncommut. Geom. 5(1), 1–37 (2011)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Geroldinger, A., Halter-Koch, F.: Non-unique factorizations. In: Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics (Boca Raton), vol. 278. Chapman& Hall/CRC, Boca Raton (2006)Google Scholar
  8. 8.
    Laca, M.: From endomorphisms to automorphisms and back: dilations and full corners. J. London Math. Soc. (2) 61(3), 893–904 (2000)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Laca, M., Neshveyev, S.: Type \({III}_1\) equilibrium states of the Toeplitz algebra of the affine semigroup over the natural numbers. J. Funct. Anal. 261(2), 169–187 (2011)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Laca, M., Larsen, N., Neshveyev, S.: On Bost–Connes systems for number fields. J. Number Theory 129, 325–338 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Laca, M., Neshveyev, S., Trifkovic, M.: Bost–Connes systems. In: Hecke Algebras and Induction (preprint, arXiv:1010.4766)Google Scholar
  12. 12.
    Laca, M., Raeburn, I.: Semigroup crossed products and the Toeplitz algebras of nonabelian groups. J. Funct. Anal. 139(2), 415–440 (1996)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Laca, M., Raeburn, I.: Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers. Adv. Math. 225(2), 643–688 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Laca, M., van Frankenhuijsen, M.: Phase transitions on Hecke \(C^*\)-algebras and class-field theory over \({\mathbb{Q}}\). J. Reine Angew. Math. 595, 25–53 (2006)MathSciNetMATHGoogle Scholar
  15. 15.
    Li, X.: Ring C\(^*\)-algebras. Math. Ann. 348(4), 859–898 (2010)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Li, X.: Semigroup \(C^*\)-algebras and amenability of semigroups (preprint, arXiv:1105.5539, 2011)Google Scholar
  17. 17.
    Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer, Berlin (1990)MATHGoogle Scholar
  18. 18.
    Neshveyev, S.: Traces on crossed products (preprint, 2010)Google Scholar
  19. 19.
    Neukirch, J.: Algebraic number theory. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322. Springer, Berlin [Translated from the 1992 German original and with a note by Norbert Schappacher. With a foreword by Harder G (1999)]Google Scholar
  20. 20.
    Peebles, J.: The Toeplitz \(C^{\ast }\)-algebra of the semigroup of principal ideals in a number field. MSc. Thesis, University of Victoria. https://dspace.library.uvic.ca:8443/handle/1828/2380 (2005)
  21. 21.
    Thoma, E.: Über unitäre Darstellungen abzählbarer, diskreter. Math. Ann. 153, 111–138 (1964)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Joachim Cuntz
    • 1
  • Christopher Deninger
    • 1
  • Marcelo Laca
    • 2
  1. 1.Mathematisches InstitutMünsterGermany
  2. 2.Mathematics and StatisticsUniversity of VictoriaVictoriaCanada

Personalised recommendations