Mathematische Annalen

, Volume 355, Issue 2, pp 481–518 | Cite as

On deformation rings of residually reducible Galois representations and R = T theorems

Article

Abstract

We introduce a new method of proof for R = T theorems in the residually reducible case. We study the crystalline universal deformation ring R (and its ideal of reducibility I) of a mod p Galois representation ρ0 of dimension n whose semisimplification is the direct sum of two absolutely irreducible mutually non-isomorphic constituents ρ1 and ρ2. Under some assumptions on Selmer groups associated with ρ1 and ρ2 we show that R/I is cyclic and often finite. Using ideas and results of (but somewhat different assumptions from) Bellaïche and Chenevier we prove that I is principal for essentially self-dual representations and deduce statements about the structure of R. Using a new commutative algebra criterion we show that given enough information on the Hecke side one gets an R = T-theorem. We then apply the technique to modularity problems for 2-dimensional representations over an imaginary quadratic field and a 4-dimensional representation over Q.

Mathematics Subject Classification (2000)

11F80 11F55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, M., Klosin, K.: Yoshida lifts and the Bloch-Kato conjecture for the convolution L-function. Preprint (2010)Google Scholar
  2. 2.
    Atiyah M.F., Macdonald I.G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969)MATHGoogle Scholar
  3. 3.
    Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R.: Potential automorphy and change of weight. Preprint (2010). http://arxiv.org/abs/1010.2561
  4. 4.
    Bass H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bellaïche, J., Chenevier, G.: p-adic families of Galois representations and higher rank Selmer groups. Astérisque 324 (2009)Google Scholar
  6. 6.
    Berger T.: On the Eisenstein ideal for imaginary quadratic fields. Compos. Math. 145(3), 603–632 (2009)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Berger T., Klosin K.: A deformation problem for Galois representations over imaginary quadratic fields. Journal de l’Institut de Math. de Jussieu 8(4), 669–692 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Berger T., Klosin K.: R = T theorem for imaginary quadratic fields. Math. Ann. 349(3), 675–703 (2011)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bloch, S., Kato, K.: L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, vol.I. Progr. Math., vol. 86, pp. 333–400. Birkhäuser Boston, Boston (1990)Google Scholar
  10. 10.
    Böcherer, S., Dummigan, N., Schulze-Pillot, R.: Yoshida lifts and Selmer groups. J. Math. Soc. Japan. http://arxiv.org/abs/1012.5817
  11. 11.
    Brown J.: Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture. Compos. Math. 143(2), 290–322 (2007)MathSciNetMATHGoogle Scholar
  12. 12.
    Calegari F.: Eisenstein deformation rings. Compos. Math. 142(1), 63–83 (2006)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Clozel, L., Harris, M., Taylor, R.: Automorphy for some l-adic lifts of automorphic mod l Galois representations. Publ. Math. Inst. Hautes Études Sci. 108, 1–181 (2008). With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France VignérasGoogle Scholar
  14. 14.
    Darmon, H., Diamond, F., Taylor, R.: Fermat’s last theorem. Elliptic Curves, Modular Forms & Fermat’s Last Theorem (Hong Kong, 1993), pp. 2–140. International Press, Cambridge (1997)Google Scholar
  15. 15.
    Dee, J.: Selmer groups of Hecke characters and Chow groups of self products of CM elliptic curves. Preprint (1999). arXiv:math.NT/9901155v1Google Scholar
  16. 16.
    Diamond, F., Flach, M., Guo, L.: The Tamagawa number conjecture of adjoint motives of modular forms. Ann. Sci. École Norm. Sup. 37(4) (2004)Google Scholar
  17. 17.
    Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)Google Scholar
  18. 18.
    Faltings, G., Chai, C.-L.: Degeneration of abelian varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22. Springer, Berlin (1990). With an appendix by David MumfordGoogle Scholar
  19. 19.
    Fontaine, J.-M.: Valeurs spéciales des fonctions L des motifs. Astérisque no. 206, Exp. No. 751, 4, 205–249, S’eminaire Bourbaki, vol. 1991/92 (1992)Google Scholar
  20. 20.
    Fontaine, J.-M., Laffaille, G.: Construction de représentations p-adiques. Ann. Sci. École Norm. Sup. (4) 15(4), 547–608 (1982)Google Scholar
  21. 21.
    Fontaine, J.-M., Perrin-Riou, B.: Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L. Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, pp. 599–706. Amer. Math. Soc., Providence (1994)Google Scholar
  22. 22.
    Geraghty, D.: Modularity lifting theorems for ordinary Galois representations. Preprint (2010)Google Scholar
  23. 23.
    Hida, H.: Modular forms and Galois cohomology. Cambridge Studies in Advanced Mathematics, vol. 69. Cambridge University Press, Cambridge (2000)Google Scholar
  24. 24.
    Jarvis F.: Level lowering for modular mod l representations over totally real fields. Math. Ann. 313(1), 141–160 (1999)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Jorza, A.: Crystalline representations for GL2 over quadratic imaginary fields. Ph.D. thesis, Princeton University (2010)Google Scholar
  26. 26.
    Klosin K.: Congruences among automorphic forms on U(2,2) and the Bloch-Kato conjecture. Annales de l’institut Fourier 59(1), 81–166 (2009)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Laumon, G.: Fonctions zêtas des variétés de Siegel de dimension trois. Astérisque 302, 1–66 (2005). Formes automorphes. II. Le cas du groupe {GSp(4)Google Scholar
  28. 28.
    Livné R.: On the conductors of mod l Galois representations coming from modular forms. J. Number Theory 31(2), 133–141 (1989)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Matsumura, H.: Commutative Ring Theory, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1989) (Translated from the Japanese by M. Reid)Google Scholar
  30. 30.
    Mazur, B.: An introduction to the deformation theory of Galois representations. Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995), pp. 243–311. Springer, New York (1997)Google Scholar
  31. 31.
    Rubin K.: The “main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math. 103(1), 25–68 (1991)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Rubin, K.: Euler systems. Annals of Mathematics Studies, vol. 147. Princeton University Press, Princeton (2000). Hermann Weyl Lectures. The Institute for Advanced StudyGoogle Scholar
  33. 33.
    Skinner C.M., Wiles A.J.: Ordinary representations and modular forms. Proc. Natl. Acad. Sci. USA 94(20), 10520–10527 (1997)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Skinner, C.M., Wiles, A.J.: Residually reducible representations and modular forms. Inst. Hautes Études Sci. Publ. Math. 89, 5–126 (1999)Google Scholar
  35. 35.
    Taylor R.: Automorphy for some l-adic lifts of automorphic mod l Galois representations. II. Publ. Math. Inst. Hautes Études Sci 108, 183–239 (2008)MATHCrossRefGoogle Scholar
  36. 36.
    Urban E.: On residually reducible representations on local rings. J. Algebra 212(2), 738–742 (1999)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Urban E.: Selmer groups and the Eisenstein-Klingen ideal. Duke Math. J. 106(3), 485–525 (2001)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Weissauer, R.: Four dimensional Galois representations. Astérisque 302, 67–150 (2005). Formes automorphes. II. Le cas du groupe {GSp(4)Google Scholar
  39. 39.
    Weston, T.: On Selmer groups of geometric Galois representations. Thesis, Harvard University, Cambridge (2000)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of SheffieldSheffieldUK
  2. 2.Department of MathematicsQueens College, City University of New YorkFlushingUSA

Personalised recommendations