Mathematische Annalen

, Volume 354, Issue 3, pp 955–966

Minimal surfaces in quasi-Fuchsian 3-manifolds

Article

Abstract

In this paper, we prove that if a quasi-Fuchsian 3-manifold M contains a closed geodesic with complex length \({\fancyscript {L} = l + i\theta}\) such that \({|\theta|/l \gg 1}\) , where l > 0 and −π ≤ θπ, then it contains at least two incompressible minimal surfaces near the geodesic.

Mathematics Subject Classification (2000)

Primary 53A10 Secondary 57M05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson M.T.: Complete minimal hypersurfaces in hyperbolic n-manifolds. Comment. Math. Helvetici 58(2), 264–290 (1983)MATHCrossRefGoogle Scholar
  2. 2.
    Calegari D., Gabai D.: Shrinkwrapping and the taming of hyperbolic 3-manifolds. J. Am. Math. Soc. 19(2), 385–446 (2006)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Meeks W. III, Simon L., Yau S.T.: Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature. Ann. Math. 116(3), 621–659 (1982)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Meeks W. III, Yau S.T.: The classical plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma. Topology 21(4), 409–442 (1982)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Meeks W. III, Yau S.T.: The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z. 179(2), 151–168 (1982)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Meyerhoff R.: A lower bound for the volume of hyperbolic 3-manifolds. Canad. J. Math. 39(5), 1038–1056 (1987)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Mori H.: On surfaces of right helicoid type in H 3. Bol. Soc. Brasil. Mat. 13(2), 57–62 (1982)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Morrey C.B. Jr: The problem of plateau on a Riemannian manifold. Ann. Math. 49, 807–851 (1948)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Otal, J.-P.: Les géodésiques fermées d’une variété hyperbolique en tant que nœuds. In: Kleinian Groups and Hyperbolic 3-manifolds (Warwick, 2001), London Mathematical Society Lecture Note Series, vol. 299, pp. 95–104. Cambridge University Press, Cambridge (2003)Google Scholar
  10. 10.
    Schoen R., Yau S.T.: Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature. Ann. Math. 110(1), 127–142 (1979)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Schoen R., Yau S.T.: Lectures on Differential Geometry. International Press, Cambridge (1994)MATHGoogle Scholar
  12. 12.
    Tuzhilin, A.A.: Global properties of minimal surfaces in \({{\mathbb R}^3}\) and \({{\mathbb H}^3}\) and their Morse type indices. In: Minimal Surfaces, Advances in Soviet Mathematics, vol. 15, pp. 193–233. American Mathematical Society, Providence (1993)Google Scholar
  13. 13.
    Uhlenbeck, K.K.: Closed minimal surfaces in hyperbolic 3-manifolds. In: Seminar on Minimal Submanifolds, Annals of Mathematics Studies, vol. 103, pp. 147–168. Princeton University Press, PrincetonGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsCentral Connecticut State UniversityNew BritainUSA

Personalised recommendations