Advertisement

Mathematische Annalen

, Volume 354, Issue 1, pp 1–42 | Cite as

Cusps of the Kähler moduli space and stability conditions on K3 surfaces

  • Heinrich Hartmann
Article

Abstract

Ma (Int J Math 20(6):727–750, 2009) established a bijection between Fourier–Mukai partners of a K3 surface and cusps of the Kähler moduli space. The Kähler moduli space can be described as a quotient of Bridgeland’s stability manifold. We study the relation between stability conditions σ near to a cusp and the associated Fourier–Mukai partner Y in the following ways. (1) We compare the heart of σ to the heart of coherent sheaves on Y. (2) We construct Y as moduli space of σ-stable objects. An appendix is devoted to the group of auto-equivalences of \({\mathcal{D}^b(X)}\) which respect the component \({Stab^{\dagger}(X)}\) of the stability manifold.

Mathematics Subject Classification (2000)

14F05 14J28 18E30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baily W.L., Borel A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math. 84(2), 442–528 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Beauville A., Bourguignon J.-P., Demazure M.: Géométrie des surfaces K3: modules et périodes. Société Mathématique de France, Paris (1985)Google Scholar
  3. 3.
    Borel, A., Ji, L.: Compactifications of symmetric and locally symmetric spaces. In: Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston (2006)Google Scholar
  4. 4.
    Bridgeland T.: Stability conditions on triangulated categories. Ann. Math. (2) 166(2), 317–345 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bridgeland T.: Stability conditions on K3 surfaces. Duke Math. J. 141(2), 241–291 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bridgeland, T.: Spaces of stability conditions. In: Algebraic geometry—Seattle 2005. Proc. Sympos. Pure Math., Part 1, vol. 80, pp. 1–21. Amer Math. Soc., Providence (2009)Google Scholar
  7. 7.
    Dolgachev I.V.: Mirror symmetry for lattice polarized K3 surfaces. J. Math. Sci. 81(3), 2599–2630 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Grothendieck, A.: Théorie des intersections et théorème de Riemann-Roch (SGA6). In: Lecture Notes in Mathematics, vol. 225. Springer, Berlin (1971)Google Scholar
  9. 9.
    Hartshorne, R.: Algebraic geometry. In: Graduate Texts in Mathematics, No. 52. Springer, New York (1977)Google Scholar
  10. 10.
    Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. In: Pure and Applied Mathematics, vol. 80. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1978)Google Scholar
  11. 11.
    Hosono S., Lian B.H., Oguiso K., Yau S.-T.: Auto equivalences of derived category of a K3 surface and monodromy transformations. J. Algebraic Geom. 13(3), 513–545 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Huybrechts, D.: Fourier–Mukai transforms in algebraic geometry. In: Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, Oxford (2006)Google Scholar
  13. 13.
    Huybrechts D.: Derived and abelian equivalence of K3 surfaces. J. Algebraic Geom. 17(2), 375–400 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Huybrechts D., Macrì E., Stellari P.: Derived equivalences of K3 surfaces and orientation. Duke Math. J. 149(3), 461– (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Huybrechts D., Stellari P.: Equivalences of twisted K3 surfaces. Math. Ann. 332(4), 901–936 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ji L., MacPherson R.: Geometry of compactifications of locally symmetric spaces. Ann. Inst. Fourier (Grenoble) 52(2), 457–559 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lieblich M.: Moduli of complexes on a proper morphism. J. Algebraic Geom. 15(1), 175–206 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Looijenga E.: Compactifications defined by arrangements. II. Locally symmetric varieties of type IV. Duke Math. J. 119(3), 527–588 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ma S.: Fourier-Mukai partners of a K3 surface and the cusps of its Kahler moduli. Int. J. Math. 20(6), 727–750 (2009)zbMATHCrossRefGoogle Scholar
  20. 20.
    Ma S.: On the 0-dimensional cusps of the K ähler moduli of a K3 surface. Math. Ann. 348(1), 57–80 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Mukai, S.: On the moduli space of bundles on K3 surfaces. I. Tata Inst. Fund. Res. Stud. Math., vol. 11. Tata Inst. Fund. Res., Bombay (1987)Google Scholar
  22. 22.
    Mumford, D.: Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics No. 5. Tata Institute of Fundamental Research, Bombay (1970)Google Scholar
  23. 23.
    Ploog, D.: Groups of autoequivalences of derived categories of smooth projective varieties. PhD thesis, FU Berlin (2005)Google Scholar
  24. 24.
    Toda Y.: Moduli stacks and invariants of semistable objects on K3 surfaces. Adv. Math. 217(6), 2736–2781 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute for MathematicsUniversity of BonnBonnGermany

Personalised recommendations