Mathematische Annalen

, Volume 353, Issue 2, pp 333–357 | Cite as

Conformal entropy rigidity through Yamabe flows

  • Pablo Suárez-SerratoEmail author
  • Samuel Tapie


We introduce two versions of the Yamabe flow which preserve negative scalar-curvature bounds. First we show existence and smooth convergence of solutions to these flows. We then show that a metric with negative scalar curvature is controlled by the Yamabe metrics in the same conformal class with constant extremal scalar curvatures. This implies that the volume entropy of our original metric is controlled by the entropies of these Yamabe metrics. We eventually use these Yamabe flows to prove an entropy-rigidity result: when the Yamabe metric has negative sectional curvature, the entropy of a metric in the same conformal class is extremal if and only if the metric has constant extremal scalar curvature.

Mathematics Subject Classification (2000)

53C21 37A35 53C44 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubin T.: Nonlinear analysis on manifolds Monge-Ampère equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252. Springer, New York (1982)Google Scholar
  2. 2.
    Besson G., Courtois G., Gallot S.: Entropie et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Funct. Anal. 5(5), 731–799 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Besson G., Courtois G., Gallot S.: Minimal entropy and Mostow’s rigidity theorems. Ergod. Theory Dyn. Syst. 16(4), 623–649 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Besse, A.: Einstein manifolds. In: Classics in Mathematics. Springer, Berlin (2008) (reprint of the 1987 edition)Google Scholar
  5. 5.
    Brendle S.: Convergence of the Yamabe flow for arbitrary initial energy. J. Differ. Geom. 69, 217–278 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brendle S.: Convergence of the Yamabe flow in dimension 6 and higher. Invent. Math. 170, 541–576 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chow, B., Bennett, P., Lu, Ni L.: Hamilton’s Ricci flow. In: Graduate Studies in Mathematics, vol. 77 (2008)Google Scholar
  8. 8.
    Connell C., Farb B.: Minimal entropy rigidity for lattices in products of rank one symmetric spaces. Commun. Anal. Geom. 11(5), 1001–1026 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Freire A., Mañé R.: On the entropy of the geodesic flow in manifolds without conjugate points. Invent Math. 69, 375–392 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 11.
    Gromov M., Thurston W.: Pinching constants for hyperbolic manifolds. Invent. Math. 89(1), 1–12 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 14.
    Hamilton, R.: Lectures on geometric flows (1989, unpublished manuscript)Google Scholar
  12. 15.
    Hamenstädt U.: Entropy-rigidity of locally symmetric spaces of negative curvature. Ann. Math. (2) 131(1), 35–51 (1990)zbMATHCrossRefGoogle Scholar
  13. 16.
    Jane D.: An example of how the Ricci flow can increase topological entropy. Ergod. Theory Dyn. Syst. 27(6), 1919–1932 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 18.
    Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. In: Encyclopedia of Mathematics and its Applications (with a supplementary chapter by Katok and Leonardo Mendoza), vol. 54. Cambridge University Press, Cambridge (1995).Google Scholar
  15. 19.
    Katok A., Knieper G., Weiss H.: Formulas for the derivative and critical points of topological entropy for Anosov and geodesic flows. Commun. Math. Phys. 138(1), 19–31 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 20.
    Knieper G.: The uniqueness of the maximal measure for geodesic flows on symmetric spaces of higher rank. Israel J. Math. 149, 171–183 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 21.
    Kobayashi O.: Scalar curvature of a metric with unit volume. Math. Ann. 279, 253–265 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 22.
    Ledrappier F., Wang X.: An integral formula for the volume entropy with applications to rigidity. J. Differ. Geom. 85(3), 461–478 (2010)MathSciNetzbMATHGoogle Scholar
  19. 23.
    Lieberman G.: Second Order Parabolic Differential Equations. World Scientific Publishing, River Edge (1996)zbMATHGoogle Scholar
  20. 24.
    Manning A.: Topological entropy for geodesic flows. Ann. Math. (2) 110(3), 567–573 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 25.
    Manning A.: The volume entropy of a surface decreases along the Ricci flow. Ergod. Theory Dyn. Syst. 24(1), 171–176 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 27.
    Mostow G., Siu Y.T.: A compact Kähler surface of negative curvature not covered by the ball. Ann. Math. (2) 112(2), 321–360 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 28.
    Robert, G.: Invariants topologiques et géométriques reliés aux longueurs des géodésiques et aux sections harmoniques de fibrés. PhD thesis, Institut Fourier de GrenobleGoogle Scholar
  24. 29.
    Schwetlick H., Struwe M.: Convergence of the Yamabe flow for large energies. J. Reine Angew. Math. 562, 59–100 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 31.
    Trudinger N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa (3) 22, 265–274 (1968)MathSciNetzbMATHGoogle Scholar
  26. 32.
    Yamabe H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)MathSciNetzbMATHGoogle Scholar
  27. 33.
    Yau S.T.: Remarks on conformal transformations. J. Differ. Geom 8, 369–381 (1973)zbMATHGoogle Scholar
  28. 34.
    Ye R.: Global existence and convergence of Yamabe flow. J. Differ. Geom. 39(1), 35–50 (1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Instituto de MatemáticasUniversidad Nacional Autonóma de México, Ciudad Universitaria, CoyoacánMexicoMexico
  2. 2.Departament de Matemàtica Aplicada 1Universitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Laboratoire Jean LerayUniversité de Nantes 2Nantes Cedex 3France

Personalised recommendations