Mathematische Annalen

, Volume 352, Issue 3, pp 543–566 | Cite as

Projection decomposition in multiplier algebras

Article

Abstract

In this paper we present new structural information about the multiplier algebra \({\mathcal M (\mathcal A )}\) of a σ-unital purely infinite simple C*-algebra \({\mathcal {A}}\), by characterizing the positive elements \({A\in \mathcal M (\mathcal A )}\) that are strict sums of projections belonging to \({\mathcal A }\) . If \({A\not\in \mathcal {A}}\) and A itself is not a projection, then the necessary and sufficient condition for A to be a strict sum of projections belonging to \({\mathcal {A} }\) is that \({\|A\| >1 }\) and that the essential norm \({\|A\|_{ess} \geq 1}\). Based on a generalization of the Perera–Rordam weak divisibility of separable simple C*-algebras of real rank zero to all σ-unital simple C*-algebras of real rank zero, we show that every positive element of \({\mathcal {A}}\) with norm >1 can be approximated by finite sums of projections. Based on block tri-diagonal approximations, we decompose any positive element \({A\in \mathcal M (\mathcal {A} )}\) with \({\| A\| >1 }\) and \({\| A\|_{ess} \geq 1}\) into a strictly converging sum of positive elements in \({\mathcal A}\) with norm >1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antezana, J., Massey, P., Ruiz, M., Stojanoff, D.: The Schur-Horn Theorem for operators and frames with prescribed norms and frame operator. Ill. J. Math. (2007, preprint)Google Scholar
  2. 2.
    Blackadar B.: K-Theory for Operator Algebras. Springer, New York (1986)MATHCrossRefGoogle Scholar
  3. 3.
    Brown L., Pedersen G.: C*-algebras of real rank zero. J. Funct. Anal. 99, 131–149 (1991)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Davidson, K.: C*-algebras by example. Fields Institute Monographs, vol. 6. American Mathematical Society, Providence, RI (1996)Google Scholar
  5. 5.
    Dykema K., Freeman D., Kornelson K., Larson D., Ordower M., Weber E.: Ellipsoidal tight frames and projection decompositions of operators. Ill. J. Math. 48(2), 477–489 (2004)MathSciNetMATHGoogle Scholar
  6. 6.
    Elliott G.A.: Derivations of matroid C*-algebras. II. Ann. Math. (2) 100, 407–422 (1974)MATHCrossRefGoogle Scholar
  7. 7.
    Elliott G.A., Gong G.: On the classification of C*-algebras of real rank zero. II. Ann. Math. (2) 144(3), 497–610 (1996)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Elliott, G., Rordam, M.: Perturbation of Hausdorff moment sequences, and an application to the theory of C*-algebras of real rank zero. In: Operator Algebras. The Abel Symposium 2004, pp. 97–115. Springer, Berlin (2006)Google Scholar
  9. 9.
    Fillmore P.: On sums of projections. J. Funct. Anal. 4, 146–152 (1969)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Frank M., Larson D.: A module frame concept for Hilbert C*-modules. Contemp. Math. 247, 207–233 (1999)MathSciNetGoogle Scholar
  11. 11.
    Frank M., Larson D.: Frames in Hilbert C*-modules and C*-algebras. J. Oper. Theory 48(2), 273–314 (2002)MathSciNetMATHGoogle Scholar
  12. 12.
    Kaftal V., Ng P.W., Zhang S.: Strong sums of projections in \({\mathbb{B}(\mathcal {H})}\) and in von Neumann factors. J. Funct. Anal. 257, 2497–2529 (2009)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kornelson K., Larson D.: Rank-one decomposition of operators and construction of frames. Contemp. Math. 345, 203–214 (2004)MathSciNetGoogle Scholar
  14. 14.
    Lin H.: Skeleton C*-algebras. Can. J. Math. 44, 324–341 (1992)MATHCrossRefGoogle Scholar
  15. 15.
    Lin H.: Generalized Weyl-von Neumann theorems. II. Math. Scand. 77(1), 129–147 (1995)MathSciNetMATHGoogle Scholar
  16. 16.
    Lin H.: Embedding an AH-algebra into a simple C*-algebra with prescribed KK-data. K Theory 24(2), 135–156 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Lin H., Zhang S.: On infinite simple C*-algebras. J. Funct. Anal. 100(1), 221–231 (1991)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Lin H.: An Introduction to the Classification of Amenable C*-Algebras. World Scientific Publishing Co. Inc., River Edge (2001)CrossRefGoogle Scholar
  19. 19.
    Perera F., Rordam M.: AF-embeddings into C*-algebras of real rank zero. J. Funct. Anal. 217(1), 142–170 (2004)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Wegge-Olsen N.E.: K-Theory and C *-algebras. Oxford University Press, Oxford (1993)Google Scholar
  21. 21.
    Zhang S.: On the structure of projections and ideals of corona algebras. Can. J. Math. 41(4), 721–742 (1989)MATHCrossRefGoogle Scholar
  22. 22.
    Zhang S.: A property of purely infinite simple C*-algebras. Proc. Am. Math. Soc. 109(3), 717–720 (1990a)MATHGoogle Scholar
  23. 23.
    Zhang S.: C*-algebras with real rank zero and the internal structure of their corona and multiplier algebras. III. Can. J. Math. 42(1), 159–190 (1990b)MATHCrossRefGoogle Scholar
  24. 24.
    Zhang S.: Diagonalizing projections in multiplier algebras and in matrices over a C*-algebra. Pac. J. Math. 145(1), 181–200 (1990c)MATHGoogle Scholar
  25. 25.
    Zhang S.: A Riesz decomposition property and ideal structure of multiplier algebras. J. Oper. Theory 24(2), 209–225 (1990d)MATHGoogle Scholar
  26. 26.
    Zhang S.: Matricial structure and homotopy type of simple C*-algebras with real rank zero. J. Oper. Theory 26, 283–312 (1991a)MATHGoogle Scholar
  27. 27.
    Zhang S.: Ideals of generalized Calkin algebras. Contemp. Math. 120, 193–198 (1991b)Google Scholar
  28. 28.
    Zhang S.: K 1-groups, quasidiagonality, and interpolation by multiplier projections. Trans. Am. Math. Soc. 325(2), 793–818 (1991c)MATHCrossRefGoogle Scholar
  29. 29.
    Zhang S.: Certain C*-algebras with real rank zero and their corona and multiplier algebras. I. Pac. J. Math. 155(1), 169–197 (1992a)MATHGoogle Scholar
  30. 30.
    Zhang S.: C*-algebras with real rank zero and their corona and multiplier algebras. IV. Int. J. Math. 3(2), 309–330 (1992b)MATHCrossRefGoogle Scholar
  31. 31.
    Zhang S.: Certain C*-algebras with real rank zero and their corona and multiplier algebras. I. Pac. J. Math. 155(1), 169–197 (1992c)MATHGoogle Scholar
  32. 32.
    Zhang S.: Certain C*-algebras with real rank zero and their corona and multiplier algebras. II. K Theory 6(1), 1–27 (1992d)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhang, S.: Quasidiagonalizing unitaries and the generalized Weyl-von Neumann theorem. In: Algebraic Methods in Operator Theory. Birkhauser, Boston (1994)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of MathematicsUniversity of LouisianaLafayetteUSA

Personalised recommendations