Mathematische Annalen

, Volume 352, Issue 1, pp 27–54 | Cite as

Entire functions with Julia sets of positive measure

Article

Abstract

Let f be a transcendental entire function for which the set of critical and asymptotic values is bounded. The Denjoy–Carleman–Ahlfors theorem implies that if the set of all z for which |f(z)| > R has N components for some R > 0, then the order of f is at least N/2. More precisely, we have log log M(r, f) ≥ (N/2) log rO(1), where M(r, f) denotes the maximum modulus of f. We show that if f does not grow much faster than this, then the escaping set and the Julia set of f have positive Lebesgue measure. However, as soon as the order of f exceeds N/2, this need not be true. The proof requires a sharpened form of an estimate of Carleman and Tsuji related to the Denjoy–Carleman–Ahlfors theorem.

Mathematics Subject Classification (2000)

Primary 37F10 Secondary 30D05 30D15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barański K.: Hausdorff dimension of hairs and ends for entire maps of finite order. Math. Proc. Cambridge Philos. Soc. 145, 719–737 (2008)CrossRefMATHGoogle Scholar
  2. 2.
    Barański K., Karpińska B., Zdunik A.: Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts. Int. Math. Res. Not. IMRN 2009, 615–624 (2009)MATHGoogle Scholar
  3. 3.
    Bergweiler W.: Iteration of meromorphic functions. Bull. Am. Math. Soc. (N. S.) 29, 151–188 (1993)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bergweiler W., Eremenko A.: On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoamericana 11, 355–373 (1995)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bergweiler W., Hinkkanen A.: On semiconjugation of entire functions. Math. Proc. Cambridge Philos. Soc. 126, 565–574 (1999)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bergweiler W., Karpińska B.: On the Hausdorff dimension of the Julia set of a regularly growing entire function. Math. Proc. Cambridge Philos. Soc. 148, 531–551 (2010)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bergweiler W., Karpińska B., Stallard G.M.: The growth rate of an entire function and the Hausdorff dimension of its Julia set. J. Lond. Math. Soc. 80, 680–698 (2009)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bergweiler W., Rippon P.J., Stallard G.M.: Dynamics of meromorphic functions with direct or logarithmic singularities. Proc. Lond. Math. Soc. 97, 368–400 (2008)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bock, H.: Über das Iterationsverhalten meromorpher Funktionen auf der Juliamenge. Dissertation, Technical University Aachen (1998)Google Scholar
  10. 10.
    Carleman T.: Sur une inégalité différentielle dans la théorie des fonctions analytiques. C. R. Acad. Sci. Paris 196, 995–997 (1933)Google Scholar
  11. 11.
    de Guzmán, M.: Real Variable Methods in Fourier Analysis. In: North-Holland Math. Studies 46. Amsterdam, New York (1981)Google Scholar
  12. 12.
    Eremenko, A.E.: On the iteration of entire functions. In: Dynamical Systems and Ergodic Theory, pp. 339–345. Banach Center Publications 23, Polish Scientific Publishers, Warsaw (1989)Google Scholar
  13. 13.
    Eremenko A.E., Lyubich M.Yu.: Dynamical properties of some classes of entire functions. Ann. Inst. Fourier 42, 989–1020 (1992)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Goldberg, A.A., Ostrovskii, I.V.: Value Distribution of Meromorphic Functions. In: Transl. Math. Monographs, vol. 236. American Math. Soc., Providence (2008)Google Scholar
  15. 15.
    Hayman W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)MATHGoogle Scholar
  16. 16.
    Hayman W.K.: Subharmonic Functions, Vol. 2. In: London Math. Soc. Monographs 20. Academic Press, London (1989)Google Scholar
  17. 17.
    Hemke J.-M.: Recurrence of entire transcendental functions with simple post-singular sets. Fund. Math. 187, 255–289 (2005)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kotus J., Urbański M.: Fractal measures and ergodic theory of transcendental meromorphic functions. In: Rippon, P.J., Stallard, G.M. (eds) Transcendental Dynamics and Complex Analysis. In: London Math Soc Lect Note Ser, vol. 348, pp. 251–316. Cambridge Univ. Press, Cambridge (2008)Google Scholar
  19. 19.
    Langley J.K.: On the multiple points of certain meromorphic functions. Proc. Am. Math. Soc. 123, 355–373 (1995)CrossRefMathSciNetGoogle Scholar
  20. 20.
    McMullen C.: Area and Hausdorff dimension of Julia sets of entire functions. Trans. Am. Math. Soc. 300, 329–342 (1987)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Nevanlinna R.: Eindeutige analytische Funktionen. Springer, Berlin (1953)MATHGoogle Scholar
  22. 22.
    Peter J.: Hausdorff measure of Julia sets in the exponential family. J. Lond. Math. Soc. 82, 229–255 (2010)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Rempe L.: Rigidity of escaping dynamics for transcendental entire functions. Acta Math. 203, 235–267 (2009)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Rippon P.J., Stallard G.M.: Dimensions of Julia sets of meromorphic functions. J. Lond. Math. Soc. 71(2), 669–683 (2005)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Rippon P.J., Stallard G.M.: On questions of Fatou and Eremenko. Proc. Am. Math. Soc. 133, 1119–1126 (2005)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Rippon P.J., Stallard G.M.: Escaping points of entire functions of small growth. Math. Z. 261, 557–570 (2009)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Schubert, H.: Über die Hausdorff-Dimension der Juliamenge von Funktionen endlicher Ordnung. Dissertation, University of Kiel (2007)Google Scholar
  28. 28.
    Skorulski B.: Metric properties of the Julia set of some meromorphic functions with an asymptotic value eventually mapped onto a pole. Math. Proc. Cambridge Philos. Soc. 139, 117–138 (2005)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Speiser A.: Probleme aus dem Gebiet der ganzen transzendenten Funktionen. Comment. Math. Helv. 1, 289–312 (1929)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Stallard G.M.: Entire functions with Julia sets of zero measure. Math. Proc. Cambridge Philos. Soc. 108, 551–557 (1990)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Stallard G.M.: Dimensions of Julia sets of transcendental meromorphic functions. In: Rippon, P.J., Stallard, G.M. (eds) Transcendental Dynamics and Complex Analysis. London Math Soc Lect Note Ser, vol. 348, pp. 425–446. Cambridge Univ. Press, Cambridge (2008)Google Scholar
  32. 32.
    Taniguchi M.: Size of the Julia set of structurally finite transcendental entire function. Math. Proc. Cambridge Philos. Soc. 135, 181–192 (2003)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Tsuji, M.: Potential Theory in Modern Function Theory. Maruzen, Tokyo (1959) [reprint by Chelsea, New York (1975)]Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Mathematisches Seminar, Christian-Albrechts-Universität zu KielKielGermany

Personalised recommendations