Mathematische Annalen

, Volume 351, Issue 3, pp 541–569 | Cite as

A geometric criterion for the boundedness of characteristic classes

  • Indira Chatterji
  • Guido Mislin
  • Christophe PittetEmail author
  • Laurent Saloff-Coste


We show that for a connected Lie group G, the linearity of its radical \({\sqrt G}\) (that is of its biggest connected normal solvable subgroup), is a necessary and sufficient condition for the boundedness of all Borel cohomology classes of G with integer coefficients, and that the linearity of \({\sqrt G}\) is also equivalent to a large-scale geometric property of G (involving distortion).

Mathematics Subject Classification (2000)

Primary 57T10 55R40 Secondary 20F65 53C23 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baaj S., Skandalis G., Vaes S.: Measurable Kac cohomology for bicrossed products. Trans. Amer. Math. Soc. 357(4), 1497–1524 (2005) (electronic)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Blanc P.: Sur la cohomologie continue des groupes localement compacts. Ann. Sci. École Norm. Sup. (4) 12(2), 137–168 (1979) (French)MathSciNetGoogle Scholar
  3. 3.
    Borel A.: Compact Clifford-Klein forms of symmetric spaces. Topology 2, 111–122 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Borel A.: Topics in the homology theory of fibre bundles, Lectures given at the University of Chicago, vol. 1954. Springer, Berlin (1967)Google Scholar
  5. 5.
    Bourbaki, N.: Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, Hermann, Paris, (French) (1963)Google Scholar
  6. 6.
    Breuillard, E.: Geometry of groups of polynomial growth and shape of large balls,
  7. 7.
    Browder W.: Homology and homotopy of H-spaces. Proc. Nat. Acad. Sci. USA 46, 543–545 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bucher-Karlsson, M.: Characteristic Classes and Bounded Cohomology. Swiss Federal Institute of Technology, Zürich, thesis Nr. 15636 (2004)Google Scholar
  9. 9.
    Bucher-Karlsson M.: Finiteness properties of characteristic classes of flat bundles. Enseign. Math. (2) 53(1–2), 33–66 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Burger M., Iozzi A., Wienhard A.: Alessandra Iozzi, and Anna Wienhard, Surface group representations with maximal Toledo invariant. Ann. Math. 172(1), 517–566 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chatterji I., Pittet C., Saloff-Coste L.: Connected Lie groups and property RD. Duke Math. J. 137(3), 511–536 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chevalley, C.: Théorie des groupes de Lie. Tome III. Théorèmes généraux sur les algèbres de Lie, Actualités Sci. Ind. no. 1226, Hermann & Cie, Paris (French) (1955)Google Scholar
  13. 13.
    de Cornulier, Y.: Private communicationGoogle Scholar
  14. 14.
    Gersten S.M.: Bounded cocycles and combings of groups. Int. J. Algebra Comput. 2(3), 307–326 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Goldman W.M.: Flat bundles with solvable holonomy. II. Obstruction theory. Proc. Amer. Math. Soc. 83(1), 175–178 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gotô M.: Faithful representations of Lie groups. II . Nagoya Math J. 1, 91–107 (1950)MathSciNetGoogle Scholar
  17. 17.
    Gromov, M. Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (56): 5–99 (1983)Google Scholar
  18. 18.
    Gromov M.: Asymptotic invariants of infinite groups, Geometric group theory, vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, pp. 1–295. Cambridge Univ. Press, Cambridge (1993)Google Scholar
  19. 19.
    Grothendieck, A.: Classes de Chern et représentations linéaires des groupes discrets. Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, pp. 215–305 (French) (1968)Google Scholar
  20. 20.
    Guichardet, A.: Cohomologie des groupes topologiques et des algébres de Lie, Textes Mathématiques (Mathematical Texts), vol. 2, CEDIC, Paris, (French) (1980)Google Scholar
  21. 21.
    Halmos, P.R.: Measure Theory. D. Van Nostrand Company, Inc., New York (1950)Google Scholar
  22. 22.
    Hochschild G.: The Structure of Lie Groups. Holden-Day Inc., San Francisco (1965)zbMATHGoogle Scholar
  23. 23.
    Hochschild G.: The universal representation kernel of a Lie group. Proc. Am. Math. Soc. 11, 625–629 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Kehlet E.T.: Cross sections for quotient maps of locally compact groups. Math. Scand. 55(1), 152–160 (1984)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hoon Lee D., Sun Wu T.: On prealgebraic groups. Math. Ann. 269(2), 279–286 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Malcev A.: On linear Lie groups. C. R. (Doklady) Acad. Sci. URSS (N. S.) 40, 87–89 (1943)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Mimura, M., Toda, H.: Topology of Lie groups. I, II, Translations of Mathematical Monographs, vol. 91, (Translated from the 1978 Japanese edition by the authors). American Mathematical Society, Providence (1991)Google Scholar
  28. 28.
    Monod N.: Continuous bounded cohomology of locally compact groups. Lecture Notes in Mathematics, vol. 1758. Springer, Berlin (2001)CrossRefGoogle Scholar
  29. 29.
    Moore C.C.: Extensions and low dimensional cohomology theory of locally compact groups. I, II. Trans. Am. Math. Soc. 113, 40–63 (1964)zbMATHGoogle Scholar
  30. 30.
    Moore C.C.: Group extensions and cohomology for locally compact groups. III. Trans. Am. Math. Soc. 221(1), 1–33 (1976)zbMATHCrossRefGoogle Scholar
  31. 31.
    Moore C.C.: Group extensions and cohomology for locally compact groups. IV. Trans. Am. Math. Soc. 221(1), 35–58 (1976)zbMATHCrossRefGoogle Scholar
  32. 32.
    Onishchik, A.L., Vinberg, È.B.: Lie groups and algebraic groups, Springer Series in Soviet Mathematics, (Translated from the Russian and with a preface by D. A. Leites). Springer, Berlin, 1990Google Scholar
  33. 33.
    Osin D.V.: Subgroup distortions in nilpotent groups. Comm. Algebra 29(12), 5439–5463 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Pittet C.: Isoperimetric inequalities in nilpotent groups. J. London Math. Soc. (2) 55(3), 588–600 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Vinberg, È.B., (ed.): Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41, Springer, Berlin. (Structure of Lie groups and Lie algebras; A translation of Current problems in mathematics. Fundamental directions. vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990 [ MR1056485 (91b:22001)]; Translation by V. Minachin [V. V. Minakhin]; Translation edited by A. L. Onishchik and È. B. Vinberg) (1994)Google Scholar
  36. 36.
    Wigner D.: Algebraic cohomology of topological groups. Trans. Am. Math. Soc. 178, 83–93 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Zimmer R.J.: Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81. Birkhäuser Verlag, Basel (1984)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Indira Chatterji
    • 1
  • Guido Mislin
    • 2
  • Christophe Pittet
    • 3
    Email author
  • Laurent Saloff-Coste
    • 4
  1. 1.MAPMO Université d’OrléansOrléansFrance
  2. 2.Department of MathematicsETHZZürichSwitzerland
  3. 3.CMI Université d’Aix-Marseille IMarseilleFrance
  4. 4.Department of MathematicsCornell UniversityNew YorkUSA

Personalised recommendations