Mathematische Annalen

, Volume 350, Issue 1, pp 79–106 | Cite as

A uniform description of compact symmetric spaces as Grassmannians using the magic square



Suppose \({\mathbb{A}}\) and \({\mathbb{B}}\) are normed division algebras, i.e. \({\mathbb{R}, \mathbb{C}, \mathbb{H}}\) or \({\mathbb{O}}\), we introduce and study Grassmannians of linear subspaces in \({(\mathbb{A}\otimes\mathbb{B})^{n}}\) which are complex/Lagrangian/maximal isotropic with respect to natural two tensors on \({(\mathbb{A}\otimes\mathbb{B})^{n}}\). We show that every irreducible compact symmetric space must be one of these Grassmannian spaces, possibly up to a finite cover. This gives a simple and uniform description of all compact symmetric spaces. This generalizes the Tits magic square description for simple Lie algebras to compact symmetric spaces.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams J.F.: Lectures on Exceptional Lie Groups. University of Chicago Press, Chicago (1996)MATHGoogle Scholar
  2. 2.
    Axelrod S., Della Pietra S., Witten E.: Geometric quantization of Chern–Simons gauge theory. J. Differ. Geom. 33(3), 787–902 (1991)MATHMathSciNetGoogle Scholar
  3. 3.
    Baez, J.C.: The octonions. Bull. Am. Math. Soc. 39, 145–205 (2002). Errata in Bull Am. Math. Soc. 42, 213 (2005)Google Scholar
  4. 4.
    Barton, C.H., Sudbery, A.: Magic squares of Lie algebras. Ph.D thesis, University of York (2000). math.RA/0001083Google Scholar
  5. 5.
    Barton C.H., Sudbery A.: Magic squares and matrix models of Lie algebras. Adv. Math. 180, 596–647 (2003)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Cartan E.: Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. France 55, 114–134 (1927)MathSciNetGoogle Scholar
  7. 7.
    Freudenthal, H.: Beziehungen der \({\mathfrak{e}_{7}}\) und \({\mathfrak{e}_{8}}\) zur Oktavenebene, I, II. Indag. Math. 16, 218–230, 363–368 (1954)Google Scholar
  8. 8.
    Freudenthal, H.: Beziehungen der \({\mathfrak{e}_{7}}\) und \({\mathfrak{e}_{8}}\) zur Oktavenebene, III, IV. Indag. Math. 17, 151–157, 277–285 (1955)Google Scholar
  9. 9.
    Freudenthal, H.: Beziehungen der \({\mathfrak{e}_{7}}\) und \({\mathfrak{e}_{8}}\) zur Oktavenebene, V–IX. Indag. Math. 21, 165–201, 447–474 (1959)Google Scholar
  10. 10.
    Freudenthal H.: Beziehungen der \({\mathfrak{e}_{7}}\) und \({\mathfrak{e}_{8}}\) zur Oktavenebene, X, XI. Indag. Math. 25, 457–487 (1963)MathSciNetGoogle Scholar
  11. 11.
    Helgason S.: Differential Geometry Lie Groups, and Symmetric Spaces. Academic Press, New York (1978)MATHGoogle Scholar
  12. 12.
    Huang, Y.D., Leung, N.C.: In preparationGoogle Scholar
  13. 13.
    Jordan P., von Neumann J., Wigner E.: On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35, 29–64 (1934)CrossRefGoogle Scholar
  14. 14.
    Leung N.C.: Riemannian geometry over different normed division algebra. J. Differ. Geom. 61(2), 289–333 (2002)MATHGoogle Scholar
  15. 15.
    Springer T.A., Veldkamp F.D.: Octonions, Jordan Algebras and Exceptional Groups. Springer, Berlin (2000)MATHGoogle Scholar
  16. 16.
    Tits J.: Algebres alternatives, algebres de Jordan et algebres de Lie exceptionnelles. Indag. Math. 28, 223–237 (1966)MathSciNetGoogle Scholar
  17. 17.
    Vinberg E.B.: A construction of exceptional simple Lie groups (Russian). Tr. Semin. Vektorn. Tensorn. Anal. 13, 7–9 (1966)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.The Department of MathematicsJinan UniversityGuangzhouChina
  2. 2.The Institute of Mathematical SciencesThe Chinese University of Hong KongShatinHong Kong

Personalised recommendations