Mathematische Annalen

, Volume 349, Issue 3, pp 675–703

An R = T theorem for imaginary quadratic fields

Article

Abstract

We prove the modularity of certain residually reducible p-adic Galois representations of an imaginary quadratic field assuming the uniqueness of the residual representation. We obtain an R = T theorem using a new commutative algebra criterion that might be of independent interest. To apply the criterion, one needs to show that the quotient of the universal deformation ring R by its ideal of reducibility is cyclic Artinian of order no greater than the order of the congruence module T/J, where J is an Eisenstein ideal in the local Hecke algebra T. The inequality is proven by applying the Main conjecture of Iwasawa Theory for Hecke characters and using a result of Berger [Compos Math 145(3):603–632, 2009]. This strengthens our previous result [Berger and Klosin, J Inst Math Jussieu 8(4):669–692, 2009] to include the cases of an arbitrary p-adic valuation of the L-value, in particular, cases when R is not a discrete valuation ring. As a consequence we show that the Eisenstein ideal is principal and that T is a complete intersection.

Mathematics Subject Classification (2000)

11F80 11F55 11R34 13H10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bellaïche J., Chenevier G.: Lissité de la courbe de Hecke de GL2 aux points Eisenstein critiques. J. Inst. Math. Jussieu 5(2), 333–349 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berger, T.: An Eisenstein ideal for imaginary quadratic fields, Thesis, University of Michigan, Ann Arbor (2005)Google Scholar
  4. 4.
    Berger T.: Denominators of Eisenstein cohomology classes for GL2 over imaginary quadratic fields. Manuscripta Math. 125(4), 427–470 (2008)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Berger T.: On the Eisenstein ideal for imaginary quadratic fields. Compos. Math. 145(3), 603–632 (2009)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Berger, T., Harcos, G.: l-adic representations associated to modular forms over imaginary quadratic fields. Int. Math. Res. Not. IMRN, no.23, Art. ID rnm113 16 (2007)Google Scholar
  7. 7.
    Berger T., Klosin K.: A deformation problem for Galois representations over imaginary quadratic fields. J. Inst. Math. Jussieu 8(4), 669–692 (2009)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Am. Math. Soc. 14(4), 843–939 (2001) (electronic)Google Scholar
  9. 9.
    Calegari F.: Eisenstein deformation rings. Compos. Math. 142(1), 63–83 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Calegari, F., Dunfield, N.M.: Automorphic forms and rational homology 3-spheres. Geom. Topol. 10, 295–329 (electronic) (2006)Google Scholar
  11. 11.
    Calegari F., Emerton M.: On the ramification of Hecke algebras at Eisenstein primes. Invent. Math. 160(1), 97–144 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    de Shalit, E.: Hecke rings and universal deformation rings. In: Modular forms and Fermat’s last theorem (Boston, MA, 1995), pp. 421–445. Springer, New York (1997)Google Scholar
  13. 13.
    Eisenbud D.: Commutative algebra with a view toward algebraic geometry In: Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)Google Scholar
  14. 14.
    Fujiwara, K.: Deformation rings and Hecke algebras in the totally real case, Preprint (1999)Google Scholar
  15. 15.
    Hida H.: Kummer’s criterion for the special values of Hecke L-functions of imaginary quadratic fields and congruences among cusp forms. Invent. Math. 66(3), 415–459 (1982)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kisin, M.: The Fontaine-Mazur conjecture for GL2, Preprint (2007)Google Scholar
  17. 17.
    Mazur B. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. (1977) 47, 33–186 (1978)Google Scholar
  18. 18.
    Mazur, B.: An introduction to the deformation theory of Galois representations. In: Modular forms and Fermat’s last theorem (Boston, MA, 1995), pp. 243–311. Springer, New York (1997)Google Scholar
  19. 19.
    Mazur B., Wiles A.: Class fields of abelian extensions of Q. Invent. Math. 76(2), 179–330 (1984)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Milne, J.S.: Arithmetic duality theorems, 2nd edn. BookSurge, LLC, Charleston, SC (2006)Google Scholar
  21. 21.
    Ribet K.A.: A modular construction of unramified p-extensions of Q(μ p). Invent. Math. 34(3), 151–162 (1976)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Skinner C.M., Wiles A.J.: Ordinary representations and modular forms. Proc. Natl. Acad. Sci. USA 94(20), 10520–10527 (1997)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Skinner, C.M., Wiles, A.J.: Residually reducible representations and modular forms. Inst. Hautes Études Sci. Publ. Math. (1999) 89, 5–126 (2000)Google Scholar
  24. 24.
    Skinner C.M., Wiles A.J.: Nearly ordinary deformations of irreducible residual representations. Ann. Fac. Sci. Toulouse Math. (6) 10(1), 185–215 (2001)MATHMathSciNetGoogle Scholar
  25. 25.
    Taylor, R.: On congruences between modular forms, Thesis, Princeton University, Princeton (1988)Google Scholar
  26. 26.
    Taylor R.: Remarks on a conjecture of Fontaine and Mazur. J. Inst. Math. Jussieu 1(1), 125–143 (2002)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Taylor R., Wiles A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Tilouine, J.: Deformations of Galois representations and Hecke algebras. Published for The Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad (1996)Google Scholar
  29. 29.
    Urban E.: Formes automorphes cuspidales pour GL2 sur un corps quadratique imaginaire. Valeurs spéciales de fonctions L et congruences. Compositio Math. 99(3), 283–324 (1995)MATHMathSciNetGoogle Scholar
  30. 30.
    Urban E.: Module de congruences pour GL(2) d’un corps imaginaire quadratique et théorie d’Iwasawa d’un corps CM biquadratique. Duke Math. J. 92(1), 179–220 (1998)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Urban E.: On residually reducible representations on local rings. J. Algebra 212(2), 738–742 (1999)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Urban, E.: Sur les représentations p-adiques associées aux représentations cuspidales de \({{\rm GSp}_{4/{\mathbb{Q} }}}\) , Astérisque , no. 302, pp. 151–176, Formes automorphes. II. Le cas du groupe GSp(4) (2005)Google Scholar
  33. 33.
    Wiles A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Queens’ College, University of CambridgeCambridgeUK
  2. 2.Department of MathematicsQueens College, City University of New YorkFlushingUSA

Personalised recommendations