Mathematische Annalen

, Volume 349, Issue 2, pp 459–508 | Cite as

The geometry of the Gauss–Picard modular group

  • Elisha FalbelEmail author
  • Gábor Francsics
  • John R. Parker


We give a construction of a fundamental domain for \({{\rm PU}(2,1,\mathbb{Z} [i])}\), that is the group of holomorphic isometries of complex hyperbolic space with coefficients in the Gaussian ring of integers \({\mathbb{Z} [i]}\). We obtain from that construction a presentation of that lattice and relate it, in particular, to lattices constructed by Mostow.

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beals M., Fefferman C., Grossman R.: Strictly pseudoconvex domains in C n. Bull. Am. Math. Soc. 8, 125–322 (1983)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Cohn, L.: The dimension of spaces of automorphic forms on a certain two-dimensional complex domain. Mem. Am. Math. Soc. 1(2), no. 158 (1975)Google Scholar
  3. 3.
    Cooper, D., Hodgson, C.D., Kerckhoff, S.P.: Three-dimensional Orbifolds and Cone-Manifolds. Math. Soc. Jpn. Mem. 5, (2000)Google Scholar
  4. 4.
    Deligne P., Mostow G.D.: Monodromy of hypergeometric functions and non-lattice integral monodromy. Publ. Math. IHES 63, 5–89 (1986)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Deligne, P., Mostow, G.D.: Commensurability among Lattices in PU(1, n). In: Annals of Mathematics Studies, vol. 132. Princeton University Press, Princeton (1993)Google Scholar
  6. 6.
    Deraux M.: Dirichlet domains for the Mostow lattices. Exp. Math. 14(4), 467–490 (2005)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Deraux M., Falbel E., Paupert J.: New constructions of fundamental polyhedra in complex hyperbolic space. Acta Math. 194(2), 155–201 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Falbel, E., Francsics, G., Lax, P., Parker, J.R.: Generators of a Picard modular group in two complex dimensions. Proc. Am. Math. Soc. arXiv:0911.1104Google Scholar
  9. 9.
    Falbel E., Parker J.R.: The geometry of Eisenstein–Picard modular group. Duke Math. J. 131(2), 249–289 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Francsics G., Lax P.: A semi-explicit fundamental domain for the Picard modular group in complex hyperbolic space. Contemp. Math. 368, 211–226 (2005)MathSciNetGoogle Scholar
  11. 11.
    Francsics, G., Lax, P.: An explicit fundamental domain for the Picard modular group in two complex dimensions. arXiv:math/0509708 (2005)Google Scholar
  12. 12.
    Francsics G., Lax P.: Analysis of a Picard modular group. Proc. Natl. Acad. Sci. USA 103(30), 11103–11105 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Garland H., Raghunathan M.S.: Fundamental domains for lattices in (\({\mathbb{R}}\) -)rank 1 semisimple Lie groups. Ann. Math. (2) 92, 279–326 (1970)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Goldman W.M.: Complex Hyperbolic Geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (1999)Google Scholar
  15. 15.
    Gromov M.: Volume and bounded cohomology. Publ. Math. IHES 56, 5–99 (1982)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Holzapfel R.-P.: Invariants of arithmetic ball quotient surfaces. Math. Nachr. 103, 117–153 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Holzapfel R.-P.: Geometry and Arithmetic Around Euler Partial Differential Equations. Reidel, Dordrecht (1986)Google Scholar
  18. 18.
    Lehner J.: A Short Course in Automorphic Functions. Holt, Rinehart and Winston, Newy York (1966)zbMATHGoogle Scholar
  19. 19.
    Mostow G.D.: On a remarkable class of polyhedra in complex hyperbolic space. Pac. J. Math. 86, 171–276 (1980)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Parker J.R.: Shimizu’s lemma for complex hyperbolic space. Int. J. Math. 3, 291–308 (1992)zbMATHCrossRefGoogle Scholar
  21. 21.
    Parker J.R.: On the volumes of cusped, complex hyperbolic manifolds and orbifolds. Duke Math. J. 94(3), 433–464 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Parker J.R.: Cone metrics on the sphere and Livné’s lattices. Acta Math. 196, 1–64 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Parker J.R.: Complex hyperbolic lattices. Contemp. Math. 501, 1–42 (2009)Google Scholar
  24. 24.
    Parker J.R., Paupert J.: Unfaithful complex hyperbolic triangle groups II: Higher order reflections. Pac. J. Math. 239, 357–389 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Picard E.: Sur des fonctions de deux variables indépendentes analogues aux fonctions modulaires. Acta Math. 2, 114–135 (1883)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Picard E.: Sur des formes quadratiques ternaires indéfinies indéterminées conjuguées et sur les fonctions hyperfuchsiennes correspondantes. Acta Math. 5, 121–182 (1884)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Scott G.P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15, 401–487 (1983)zbMATHCrossRefGoogle Scholar
  28. 28.
    Series C.: The geometry of the Markoff numbers. Math. Intell. 7, 20–29 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Swan R.G.: Generators and relations for certain special linear groups. Adv. Math. 6, 1–77 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Woodward, J.M.: Integral lattices and hyperbolic manifolds. PhD thesis, University of York (2006)Google Scholar
  31. 31.
    Yasaki D.: An explicit spine for the Picard modular group over the Gaussian integers. J. Number Theory 128, 207–234 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Yasaki D.: Elliptic points of the Picard modular group. Monatsh. Math. 156, 391–396 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Zink T.: Über die Anzahl der Spitzen einiger arithmetischer Untergruppen unitärer Gruppen. Math. Nachr. 89, 315–320 (1979)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Elisha Falbel
    • 1
    Email author
  • Gábor Francsics
    • 2
  • John R. Parker
    • 3
  1. 1.Institut de MathématiquesUniversité Pierre et Marie CurieParisFrance
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA
  3. 3.Department of Mathematical SciencesDurham UniversityDurhamUK

Personalised recommendations