Mathematische Annalen

, Volume 348, Issue 4, pp 797–813 | Cite as

Local Hardy–Littlewood maximal operator

Article

Abstract

In this article we define and investigate a local Hardy–Littlewood maximal operator in Euclidean spaces. It is proved that this operator satisfies weighted L p , p > 1, and weighted weak type (1,1) estimates with weight function \({w \in A^p_{\rm{loc}}}\), the class of local A p weights which is larger than the Muckenhoupt A p class. Also, the condition \({w \in A^p_{\rm{loc}}}\) turns out to be necessary for the weighted weak type (p,p), p ≥ 1, inequality to hold.

Mathematics Subject Classification (2000)

Primary 42B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen K.F., Muckenhoupt B.: Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions. Studia Math. 72, 9–26 (1982)MATHMathSciNetGoogle Scholar
  2. 2.
    Buckley S.M.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 340, 253–272 (1993)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cordoba A., Fefferman R.: A geometric proof of the strong maximal theorem. Ann. Math. 102, 95–100 (1975)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Duoandikoetxea, J.: Fourier Analysis. Grad. Stud. Math. 29. Amer. Math. Soc., Providence (2001)Google Scholar
  5. 5.
    Duoandikoetxea J., Rubio de Francia J.L.: Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84, 541–561 (1986)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fefferman R.: Some weighted norm inequalities for Cordoba’s maximal function. Am. J. Math. 106, 1261–1264 (1984)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Muckenhoupt, B.: Transplantation theorems and multiplier theorems for Jacobi series. Mem. Am. Math. Soc. 64, no. 356 (1986)Google Scholar
  8. 8.
    Nowak A., Stempak K.: Weighted estimates for the Hankel transform transplantation operator. Tohoku Math. J. 58, 277–301 (2006)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Stein E.M., Wainger S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84, 1239–1295 (1978)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsNational Central UniversityChung-LiTaiwan, Republic of China
  2. 2.Instytut Matematyki i InformatykiPolitechnika WrocławskaWrocławPoland
  3. 3.Katedra Matematyki i Zastosowań InformatykiPolitechnika OpolskaOpolePoland

Personalised recommendations