Advertisement

Mathematische Annalen

, Volume 346, Issue 4, pp 931–947 | Cite as

On the spectral expansion of hyperbolic Eisenstein series

  • Jay Jorgenson
  • Jürg Kramer
  • Anna-Maria von Pippich
Article

Abstract

In this article, we determine the spectral expansion, meromorphic continuation, and location of poles with identifiable singularities for the scalar-valued hyperbolic Eisenstein series. Similar to the form-valued hyperbolic Eisenstein series studied in Kudla and Millson (Invent Math 54:193–211, 1979), the scalar-valued hyperbolic Eisenstein series is defined for each primitive, hyperbolic conjugacy class within the uniformizing group associated to any finite volume hyperbolic Riemann surface. Going beyond the results in Kudla and Millson (Invent Math 54:193–211, 1979) and Risager (Int Math Res Not 41:2125–2146, 2004), we establish a precise spectral expansion for the hyperbolic Eisenstein series for any finite volume hyperbolic Riemann surface by first proving that the hyperbolic Eisenstein series is in L 2. Our other results, such as meromorphic continuation and determination of singularities, are derived from the spectral expansion.

Keywords

Riemann Surface Eisenstein Series Fuchsian Group Geodesic Path Laurent Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chavel I.: Eigenvalues in Riemannian Geometry. Academic Press, New York (1984)zbMATHGoogle Scholar
  2. 2.
    Falliero T.: Dégénérescence de séries d’Eisenstein hyperboliques. Math. Ann. 339, 341–375 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Garbin D., Jorgenson J., Munn M.: On the appearance of Eisenstein series through degeneration. Comment. Math. Helv. 83, 701–721 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Iwaniec, H.: Spectral methods of automorphic forms. Graduate Studies in Mathematics, vol. 53. Amer. Math. Soc., Providence (2002)Google Scholar
  5. 5.
    Jorgenson J., Lundelius R.: Convergence of the normalized spectral counting function on degenerating hyperbolic Riemann surfaces of finite volume. J. Funct. Anal. 149, 25–57 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jorgenson J., O’Sullivan C.: Unipotent vector bundles and higher-order non-holomorphic Eisenstein series. J. Théor. Nombres Bordeaux 20, 131–163 (2008)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Kudla S., Millson J.: Harmonic differentials and closed geodesics on a Riemann surface. Invent. Math. 54, 193–211 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lundelius R.: Asymptotics of the determinant of the Laplacian on hyperbolic surfaces of finite volume. Duke Math. J. 71, 212–242 (1993)CrossRefMathSciNetGoogle Scholar
  9. 9.
    O’Sullivan C.: Properties of Eisenstein series formed with modular symbols. J. Reine Angew. Math. 518, 163–186 (2000)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Risager M.: On the distribution of modular symbols for compact surfaces. Int. Math. Res. Not. 41, 2125–2146 (2004)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Pippich A.-M.: Elliptische Eisensteinreihen. Diplomarbeit, Humboldt-Universität zu Berlin (2005)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jay Jorgenson
    • 1
  • Jürg Kramer
    • 2
  • Anna-Maria von Pippich
    • 2
  1. 1.Department of MathematicsThe City College of New YorkNew YorkUSA
  2. 2.Institut für MathematikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations