Mathematische Annalen

, Volume 345, Issue 3, pp 559–579 | Cite as

A modified Kähler–Ricci flow



In this note, we study a Kähler–Ricci flow modified from the classic version. In the non-degenerate case, strong convergence at infinite time is achieved. The main focus should be on degenerate case, where some partial results are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cao H.: Deformation of Kaehler metrics to Kaehler-Einstein metrics on compact Kaehler manifolds. Invent. Math. 81(2), 359–372 (1985)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kähler-Einstein metrics. ArXiv:math/0603431 (math.AG) (math.DG)Google Scholar
  3. 3.
    David, G., Neil, T.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Grundlehren der Mathematischen Wissenschaften, p. 224Google Scholar
  4. 4.
    Griffiths, P., Harris, J.: Principles of algebraic geometry. Pure and Applied Mathematics, p. xii+813. Wiley-Interscience [Wiley], New York (1978)Google Scholar
  5. 5.
    Hamilton R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)MATHMathSciNetGoogle Scholar
  6. 6.
    Kawamata Y.: The cone of curves of algebraic varieties. Ann. Math. (2) 119(3), 603–633 (1984)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kawamata Y.: A generalization of Kodaira-Ramanujam’s vanishing theorem. Math. Ann. 261(1), 43–46 (1982)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kolodziej, S.: The complex Monge-Ampère equation and pluripotential theory. Mem. Am. Math. Soc. 178(840), pp. x+64 (2005)Google Scholar
  9. 9.
    Kolodziej S.: Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in L p: the case of compact Kähler manifolds. Math. Ann. 342(2), 379–386 (2008)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Song J., Tian G.: The Kähler–Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170(3), 609–653 (2007)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Tian, G., Zhang, Z.: On the Kähler–Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27(2), 179–192Google Scholar
  12. 12.
    Tosatti, V.: Limits of Calabi-Yau metrics when the Kahler class degenerates. ArXiv:0710.4579 (math.DG) (math.AG)Google Scholar
  13. 13.
    Tsuji H.: Existence and degeneration of Kaehler-Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281(1), 123–133 (1988)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Tsuji, H.: Degenerate Monge-Ampère equation in algebraic geometry. Miniconference on analysis and applications (Brisbane, 1993). In: Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 33, pp. 209–224. Austral. Nat. Univ., Canberra (1994)Google Scholar
  15. 15.
    Yau S.T.: On the Ricci curvature of a compact Kaehler manifold and the complex Monge-Ampère equation I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhang, Z.: On degenerate Monge-Ampère equations over closed Kähler Manifolds. Int. Math. Res. Not. 2006, Art. ID 63640, p. 18Google Scholar
  17. 17.
    Zhang, Z.: Degenerate Monge-Ampère equations over projective manifolds. Ph.D. Thesis. MIT (2006)Google Scholar
  18. 18.
    Zhang, Z.: Scalar curvature bound for Kähler–Ricci flows over minimal manifolds of general type. ArXiv:0801.3248 (math.DG) (Submitted)Google Scholar
  19. 19.
    Zhang, Z.: Scalar curvature behavior for finite time singularity of Kähler–Ricci flow. ArXiv: 0901.1474 (math.DG). SubmittedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Michigan at Ann ArborAnn ArborUSA

Personalised recommendations