Mathematische Annalen

, 345:267 | Cite as

Gabor (super)frames with Hermite functions



We investigate vector-valued Gabor frames (sometimes called Gabor superframes) based on Hermite functions Hn. Let h = (H0, H1, . . . , Hn) be the vector of the first n + 1 Hermite functions. We give a complete characterization of all lattices \({\Lambda \subseteq \mathbb{R} ^2}\) such that the Gabor system \({\{ {\rm e}^{2\pi i \lambda _{2} t}{\bf h} (t-\lambda _1): \lambda = (\lambda _1, \lambda _2) \in \Lambda \}}\) is a frame for \({L^2 (\mathbb{R} , \mathbb{C} ^{n+1})}\). As a corollary we obtain sufficient conditions for a single Hermite function to generate a Gabor frame and a new estimate for the lower frame bound. The main tools are growth estimates for the Weierstrass σ-function, a new type of interpolation problem for entire functions on the Bargmann–Fock space, and structural results about vector-valued Gabor frames.

Mathematics Subject Classification (2000)

42C15 33C90 94A12 



  1. 1.
    Akhiezer, N.I.: Elements of the Theory of Elliptic Functions, p. viii+237. American Mathematical Society, Providence (1990)Google Scholar
  2. 2.
    Balan, R.: Density and redundancy of the noncoherent Weyl–Heisenberg superframes. In: The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), vol. 247 of Contemp. Math., pp. 29–41. Amer. Math. Soc., Providence (1999)Google Scholar
  3. 3.
    Balan, R.: Multiplexing of signals using superframes. In: SPIE Wavelets Applications, vol. 4119 of Signal and Image Processing VIII, pp. 118–129 (2000)Google Scholar
  4. 4.
    Benedetto J.J., Heil C., Walnut D.F.: Differentiation and the Balian-Low theorem. J. Fourier Anal. Appl. 1(4), 355–402 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brekke S., Seip K.: Density theorems for sampling and interpolation in the Bargmann–Fock space. III. Math. Scand. 73(1), 112–126 (1993)MATHMathSciNetGoogle Scholar
  6. 6.
    Daubechies I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36(5), 961–1005 (1990)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Duffin R.J., Schaeffer A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Feichtinger H.G., Gröchenig K.: Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86(2), 307–340 (1989)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Feichtinger, H.G., Kozek, W.: Quantization of TF lattice-invariant operators on elementary LCA groups. In Gabor analysis and algorithms, pp. 233–266. Birkhäuser Boston, Boston (1998)Google Scholar
  10. 10.
    Folland, G.: Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 122, p. x+277. Princeton University Press, Princeton (1989)Google Scholar
  11. 11.
    Führ H.: Simultaneous estimates for vector-valued Gabor frames of Hermite functions. Adv. Comput. Math. 29, 357–373 (2008)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gabor D.: Theory of communication. J. IEE (London) 93(III), 429–457 (1946)Google Scholar
  13. 13.
    Gröchenig K.: An uncertainty principle related to the Poisson summation formula. Studia Math. 121(1), 87–104 (1996)MATHMathSciNetGoogle Scholar
  14. 14.
    Gröchenig, K.: Foundations of Time-frequency Analysis, p. xvi+359. Birkhäuser, Boston (2001)Google Scholar
  15. 15.
    Gröchenig, K.: Gabor frames without inequalities. Int. Math. Res. Not. IMRN (23):Art. ID rnm111, 21 (2007)Google Scholar
  16. 16.
    Gröchenig, K.: Weight functions in time-frequency analysis. In: Rodino, L., Wong, M.-W. (eds.) Pseudodifferential Operators: Partial Differential Equations and Time-frequency Analysis, vol. 52, pp. 343–366. Fields Institute Comm. (2007)Google Scholar
  17. 17.
    Gröchenig K., Lyubarskii Yu.: Gabor frames with Hermite functions. C. R. Math. Acad. Sci. Paris 344(3), 157–162 (2007)MATHMathSciNetGoogle Scholar
  18. 18.
    Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Am. Math. Soc. 147(697):x+94 (2000)Google Scholar
  19. 19.
    Hartmann, M., Matz, G., Schafhuber, D.: Wireless multicarrier communications via multipulse Gabor Riesz bases. EURASIP J. Appl. Signal Proc. 2006, 1–15 (2006). doi:10.1155/ASP/2006/23818
  20. 20.
    Hayman W.K.: The local growth of the power series: a survey of the Wiman-Valiron method. Canad. Math. Bull. 17(3), 317–358 (1974)MATHMathSciNetGoogle Scholar
  21. 21.
    Janssen A.J.E.M.: Signal analytic proofs of two basic results on lattice expansions. Appl. Comput. Harmon. Anal. 1(4), 350–354 (1994)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Janssen A.J.E.M.: Duality and biorthogonality for Weyl–Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Janssen A.J.E.M.: Some Weyl–Heisenberg frame bound calculations. Indag. Math. 7, 165–182 (1996)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Janssen, A.J.E.M.: Zak transforms with few zeros and the tie. In: Advances in Gabor Analysis. Birkhäuser Boston, Boston (2002)Google Scholar
  25. 25.
    Janssen A.J.E.M., Strohmer T.: Hyperbolic secants yield Gabor frames. Appl. Comput. Harm. Anal. 12, 259–267 (2002)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Lyubarski, Yu.: Frames in the Bargmann space of entire functions. In: Entire and Subharmonic Functions. Adv. Soviet Math., vol. 11, pp. 167–180. Amer. Math. Soc., Providence (1992)Google Scholar
  27. 27.
    Lyubarskii Yu., Seip K.: Convergence and summability of Gabor expansions at the Nyquist density. J. Fourier Anal. Appl. 5(2–3), 127–157 (1999)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Rieffel M.A.: Projective modules over higher-dimensional noncommutative tori. Canad. J. Math. 40(2), 257–338 (1988)MATHMathSciNetGoogle Scholar
  29. 29.
    Seip K., Wallsten R.: Density theorems for sampling and interpolation in the Bargmann-Fock space. II. J. Reine Angew. Math. 429, 107–113 (1992)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.Department of MathematicsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations