Mathematische Annalen

, Volume 344, Issue 2, pp 381–429 | Cite as

On Stokes operators with variable viscosity in bounded and unbounded domains

  • Helmut AbelsEmail author
  • Yutaka Terasawa
Open Access


We consider a generalization of the Stokes resolvent equation, where the constant viscosity is replaced by a general given positive function. Such a system arises in many situations as linearized system, when the viscosity of an incompressible, viscous fluid depends on some other quantities. We prove that an associated Stokes-like operator generates an analytic semi-group and admits a bounded H -calculus, which implies the maximal L q -regularity of the corresponding parabolic evolution equation. The analysis is done for a large class of unbounded domains with \({W^{2-\frac1r}_r}\) -boundary for some r > d with r ≥ q, q′. In particular, the existence of an L q -Helmholtz projection is assumed.

Mathematics Subject Classification (2000)

35Q30 76D07 47A60 47F05 



The authors are grateful to Gerd Grubb and one anonymous referee for several helpful comments to improve the presentation in this contribution. The second author was supported by a research fellowships of the Japan Society for the Promotion of Science for young scientists.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Abe T. (2004) On a resolvent estimate of the Stokes equation with Neumann-Dirichlet-type boundary condition on an infinite layer. Math. Methods Appl. Sci. 27(9): 1007–1048zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abe T., Shibata Y. (2003) On a resolvent estimate of the Stokes equation on an infinite layer. J. Math. Soc. Jpn 55(2): 469–497zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Abe T., Shibata Y. (2003) On a resolvent estimate of the Stokes equation on an infinite layer, part 2, λ  =  0 case. J. Math. Fluid Mech. 5: 245–274zbMATHMathSciNetGoogle Scholar
  4. 4.
    Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. doi: 10.1007/s00205-008-0160-2.
  5. 5.
    Abels H. (2002) Bounded imaginary powers of the Stokes operator in an infinite layer. J. Evol. Equ. 2: 439–457zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Abels, H.: Stokes equations in asymptotically flat domains and the motion of a free surface. PhD thesis, TU Darmstadt, Shaker Verlag, Aachen (2003)Google Scholar
  7. 7.
    Abels H. (2005) Bounded imaginary powers and H -calculus of the Stokes operator in two-dimensional exterior domains. Math. Z. 251(3): 589–605zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Abels, H.: Bounded imaginary powers and H -calculus of the Stokes operator in unbounded domains. In: Nonlinear Elliptic and Parabolic Problems. Progr. Nonlinear Differential Equations Appl., vol. 64, pp. 1–15. Birkhäuser, Basel (2005)Google Scholar
  9. 9.
    Abels H. (2005) Pseudodifferential boundary value problems with non-smooth coefficients. Commun. Partial Differ. Equ. 30: 1463–1503zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Abels H. (2005) Reduced and generalized Stokes resolvent equations in asymptotically flat layers, part I: unique solvability. J. Math. Fluid. Mech. 7: 201–222zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Abels H. (2005) Reduced and generalized Stokes resolvent equations in asymptotically flat layers, part II: H -calculus. J. Math. Fluid. Mech. 7: 223–260zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Abels H. (2006) Generalized Stokes resolvent equations in an infinite layer with mixed boundary conditions. Math. Nachr. 279(4): 1–17CrossRefMathSciNetGoogle Scholar
  13. 13.
    Abels, H.: Diffuse interface models for two-phase flows of viscous incompressible fluids. Lecture Notes, Max Planck Institute for Mathematics in the Sciences, no. 36/2007 (2007)Google Scholar
  14. 14.
    Abels H., Wiegner M. (2005) Resolvent estimates for the Stokes operator on an infinite layer. Differ. Integr. Equ. 18(10): 1081–1110MathSciNetzbMATHGoogle Scholar
  15. 15.
    Adams R.A. (1975) Sobolev Spaces. Academic Press, New YorkzbMATHGoogle Scholar
  16. 16.
    Amann H. (1997) Operator-valued fourier multipliers, vector-valued besov spaces, and applications. Math. Nachr. 186: 5–56zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Bergh J., Löfström J. (1976) Interpolation Spaces. Springer, BerlinzbMATHGoogle Scholar
  18. 18.
    Borchers W., Sohr H. (1987) On the semigroup of the Stokes operator for exterior domains in L q-spaces. Math. Z. 196: 415–425zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Borchers W., Varnhorn W. (1993) On the boundedness of the Stokes semigroup in two-dimensional exterior domains. Math. Z. 213: 275–299zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Bothe D., Prüss J. (2007) L P-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39(2): 379–421 (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Chua S.K. (1992) Extension theorems on weighted Sobolev space. Indiana Univ. Math. J. 41: 1027–1076zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Danchin R. (2006) Density-dependent incompressible fluids in bounded domains. J. Math. Fluid Mech. 8(3): 333–381zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Boutet de Monvel L. (1971) Boundary problems for pseudo-differential operators. Acta Math. 126: 11–51zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Denk R., Hieber M., Prüss J. (2003) \({\mathcal{R}}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788): viii+114Google Scholar
  25. 25.
    Dore G., Venni A. (1987) On the closedness of the sum of two closed operators. Math. Z 196: 189–201zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Farwig R. (2003) Weighted L q-Helmholtz decompositions in infinite cylinders and in infinite layers. Adv. Differ. Equ. 8: 357–384zbMATHMathSciNetGoogle Scholar
  27. 27.
    Farwig R., Kozono H., Sohr H. (2005) An L q-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195: 21–53zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Farwig R., Ri M.-H. (2007) The resolvent problem and H -calculus of the Stokes operator in unbounded cylinders with several exits to infinity. J. Evol. Equ. 7(3): 497–528zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Farwig R., Ri M.-H. (2007) Stokes resolvent systems in an infinite cylinder. Math. Nachr. 280(9-10): 1061–1082zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Farwig R., Sohr H. (1994) Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Jpn 46(4): 607–643zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Farwig R., Sohr H. (1996) Helmholtz decomposition and stokes resolvent system for aperture Domains in L q-spaces. Analysis 16: 1–26zbMATHMathSciNetGoogle Scholar
  32. 32.
    Giga Y. (1981) Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178: 297–329zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Giga Y. (1985) Domains of fractional powers of the Stokes operator in L r Spaces. Arch. Ration. Mech. Anal. 89: 251–265zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Giga Y., Sohr H. (1989) On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(1): 103–130MathSciNetGoogle Scholar
  35. 35.
    Giga Y., Sohr H. (1991) Abstract L p estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102: 72–94zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Grubb G. (1990) Pseudo-differential boundary problems in L p spaces. Commun. Partial Differ. Equ. 15: 289–340zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Grubb G. (1996) Functional Calculus of Pseudodifferential Boundary Problems, 2nd edn. Birkhäuser, BaselzbMATHGoogle Scholar
  38. 38.
    Grubb G., Kokholm N.J. (1993) A global calculus of parameter-dependent pseudodifferential boundary problems in L p Sobolev spaces. Acta Math. 171(2): 165–229zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Grubb G., Solonnikov V.A. (1991) Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69: 217–290zbMATHMathSciNetGoogle Scholar
  40. 40.
    Málek, J., Nečas, J., Rokyta, M., Ružička, M.: Weak and measure-valued solutions to evolutionary PDEs. In: Applied Mathematics and Mathematical Computation, vol. 13, vii, 317 p. Chapman & Hall, London (1996)Google Scholar
  41. 41.
    Kumano-Go H., Nagase M. (1978) Pseudo-differential operators with non-regular symbols and applications. Funkcial Ekvac. 21: 151–192zbMATHMathSciNetGoogle Scholar
  42. 42.
    Ladyženskaja O.A., Solonnikov, V.A.: The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. Zap. Naućn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 52,52–109, 218–219 (1975). Boundary value problems of mathematical physics, and related questions of the theory of functions, 8Google Scholar
  43. 43.
    Marschall J. (1988) Pseudodifferential operators with coefficients in Sobolev spaces. Trans. Am. Math. Soc. 307(1): 335–361zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    McIntosh, A.: Operators which have an H -calculus. In: Miniconference on Operator Theory and Partial Differential Equations. In: Jefferies, B., McIntosh, A., Ricker, W. (eds.) Proceedings of Center Math. Anal. A.N.U., vol. 14, pp. 210–231 (1986)Google Scholar
  45. 45.
    Miyakawa T. (1994) The Helmholtz decomposition of vector fields in some unbounded domains. Math. J. Toyama Univ. 17: 115–149zbMATHMathSciNetGoogle Scholar
  46. 46.
    Noll A., Saal J. (2003) H -calculus for the Stokes operator on L q-spaces. Math. Z. 244: 651–688zbMATHMathSciNetGoogle Scholar
  47. 47.
    Schumacher, K.: A chart preserving the normal vector and extensions of normal derivatives in weighted function. Preprint, TU Darmstadt, No. 2510 (2007)Google Scholar
  48. 48.
    Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in L q-spaces for bounded and exterior domains. In: Mathematical Problems Relating to the Navier–Stokes Equation. Ser. Adv. Math. Appl. Sci., vol. 11 , pp. 1–35. World Scientific, River Edge (1992)Google Scholar
  49. 49.
    Solonnikov V.A. (2001) L p-estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain. J. Math. Sci. (New York) 105(5): 2448–2484 Function theory and partial differential equationsCrossRefMathSciNetGoogle Scholar
  50. 50.
    Solonnikov, V.A.: Estimates of the solution of model evolution generalized Stokes problem in weighted H ölder spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) bf 336 (Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37),211–238, 277 (2006)Google Scholar
  51. 51.
    Triebel H. (1978) Interpolation Theory, Function Spaces, Differential Operators. North-Holland, AmsterdamGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  2. 2.Department of MathematicsHokkaido UniversitySapporo, HokkaidoJapan

Personalised recommendations