Mathematische Annalen

, 343:901 | Cite as

Plane polynomial automorphisms of fixed multidegree



Let \({\mathcal{G}}\) be the group of polynomial automorphisms of the complex affine plane. On one hand, \({\mathcal {G}}\) can be endowed with the structure of an infinite dimensional algebraic group (see Shafarevich in Math USSR Izv 18:214–226, 1982) and on the other hand there is a partition of \({\mathcal{G}}\) according to the multidegree (see Friedland and Milnor in Ergod Th Dyn Syst 9:67–99, 1989). Let \({{\mathcal{G}}_d}\) denote the set of automorphisms whose multidegree is equal to d. We prove that \({{\mathcal{G}}_d}\) is a smooth, locally closed subset of \({\mathcal{G}}\) and show some related results. We give some applications to the study of the varieties \({{\mathcal G}_{= \, m}}\) (resp. \({{\mathcal G}_{\leq \, m}}\)) of automorphisms whose degree is equal to m (resp. is less than or equal to m).


Partial Order Irreducible Component Algebraic Variety Jacobian Variety Natural Partial Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abhyankar S.S., Moh T.T.: Embeddings of the line in the plane. J. Reine Angew. Math. 276, 148–166 (1975)MATHMathSciNetGoogle Scholar
  2. 2.
    Bass H., Connell E., Wright D.: The Jacobian conjecture: reduction of degree and formal expansion of the inverse. Bull. A.M.S. 7, 287–330 (1982)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Edo E., Furter J.-P.: Some families of polynomial automorphisms. J. Pure Appl. Algebra 194, 263–271 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    van den Essen, A.: Polynomial automorphisms and the Jacobian conjecture, Progress in Math. (Boston Mass.), vol. 190. Birkhäuser, Basel (2000)Google Scholar
  5. 5.
    Freudenburg, G.: Algebraic theory of locally nilpotent derivations. Encyclopaedia of Mathematical Sciences, vol. 136. Invariant Theory and Algebraic Transformation Groups, VII. Springer, Berlin (2006)Google Scholar
  6. 6.
    Friedland S., Milnor J.: Dynamical properties of plane polynomial automorphisms. Ergod. Th Dyn. Syst. 9, 67–99 (1989)MATHMathSciNetGoogle Scholar
  7. 7.
    Furter J.-P.: On the variety of automorphisms of the affine plane. J. Algebra 195, 604–623 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Furter J.-P.: On the length of polynomial automorphisms of the affine plane. Math. Ann. 322, 401–411 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Furter, J.-P.: Polynomial composition rigidity and plane polynomial automorphisms, submitted for publication. Available at
  10. 10.
    Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique, II Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961)Google Scholar
  11. 11.
    Humphreys, J.E.: Linear Algebraic Groups, 2nd edn. Graduate Texts in Math., vol. 21. Springer, Heidelberg (1981)Google Scholar
  12. 12.
    Jung H.W.E.: Über ganze birationale Transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942)MathSciNetGoogle Scholar
  13. 13.
    Kambayashi T.: Pro-affine algebras, ind-affine groups and the Jacobian problem. J. Algebra 185(2), 481–501 (1996)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kambayashi T.: Some basic results on pro-affine algebras and ind-affine schemes. Osaka J. Math. 40(3), 621–638 (2003)MATHMathSciNetGoogle Scholar
  15. 15.
    Kraft, H.: Geometrische Methoden in der Invariantentheorie. (German) [Geometrical methods in invariant theory] Aspects of Mathematics, D1. Friedr. Vieweg & Sohn, Braunschweig (1984)Google Scholar
  16. 16.
    van der Kulk W.: On polynomial rings in two variables. Nieuw. Arch. Wisk. 1(3), 33–41 (1953)MATHGoogle Scholar
  17. 17.
    Makar-Limanov, L.: Locally nilpotent derivations, a new ring invariant and applications. Lecture notes, (1998). Available at (1998)
  18. 18.
    Mumford, D.: The red book of varieties and schemes (2nd, expanded edn.). Lecture Notes in Math., vol. 1358. Springer, Berlin (1999)Google Scholar
  19. 19.
    Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34. Springer, Berlin (1994)Google Scholar
  20. 20.
    Nagata M.: Imbedding of an abstract variety in a complete variety. J. Math. Kyoto Univ. 2, 1–10 (1962)MATHMathSciNetGoogle Scholar
  21. 21.
    Nagata, M.: On automorphism group of k[x, y]. Lecture Notes in Math., vol. 5. Kyoto Univ. (1972)Google Scholar
  22. 22.
    Rentschler R.: Opérations du groupe additif sur le plan affine (French). C. R. Acad. Sci. Paris Sér. A–B 267, A384–A387 (1968)MathSciNetGoogle Scholar
  23. 23.
    Russell P., Sathaye A.: On finding and cancelling variables in k[X, Y, Z]. J. Algebra 57(1), 151–166 (1979)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sathaye A.: On linear planes. Proc. Am. Math. Soc. 56, 1–7 (1976)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Shafarevich, I.R.: On some infinite-dimensional groups. Rend. Mat. e Appl. (5) 25, (1–2) 208–212 (1966)Google Scholar
  26. 26.
    Shafarevich I.R.: On some infinite-dimensional groups II. Math. USSR Izv. 18, 214–226 (1982)Google Scholar
  27. 27.
    Shafarevich I.R.: Letter to the editors: “On some infinite-dimensional groups II” (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 59(3), 224 (1995)MathSciNetGoogle Scholar
  28. 28.
    Suzuki M.: Propriétés topologiques des polynômes de deux variables complexes et automorphismes algébriques de l’espace C2. J. Math. Soc. Japan. 26, 241–257 (1974)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Wright D.: Abelian subgroups of Autk(k[X,Y]) and applications to actions on the affine plane. Illinois J. Math. 23.4, 579–634 (1979)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of La RochelleLa RochelleFrance

Personalised recommendations