Mathematische Annalen

, 343:421

On peak phenomena for non-commutative H

Article

Abstract

A non-commutative extension of Amar and Lederer’s peak set result is given. As its simple applications it is shown that any non-commutative H-algebra H(M, τ) has unique predual, and moreover some restriction in some of the results of Blecher and Labuschagne are removed, making them hold in full generality.

Mathematics Subject Classification (2000)

Primary 46L52 Secondary 46B20 

References

  1. 1.
    Akemann C.A.: The general Stone-Weierstrass problem. J. Funct. Anal. 4, 277–294 (1969)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Akemann C.A.: Left ideal structure of C *-algebras. J. Funct. Anal. 6, 305–317 (1970)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Amar E., Lederer A.: Points exposés de la boúle unitié de H (D). C. R. Acad. Sci. Paris Ser A 272, 1449–1452 (1971)MATHMathSciNetGoogle Scholar
  4. 4.
    Ando T.: On the predual of H . Comment. Math. Spec. issue 1, 33–40 (1978)MathSciNetGoogle Scholar
  5. 5.
    Arveson W.B.: Analyticity in operator algebras. Amer. J. Math. 89, 578–642 (1967)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Barbey K.: Ein Satz über abstrakte analytische Funktionen. Arch. Math. (Basel) 26, 521–527 (1975)MATHMathSciNetGoogle Scholar
  7. 7.
    Blecher D.P., Labuschagne L.E.: Noncommutative function theory and unique extensions. Stud. Math. 178, 177–195 (2007)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Blecher, D.P., Labuschagne, L.E.: von Neumann algebraic H p theory in Function spaces, Contemp. Math., pp. 89–114, vol. 435, American Mathematical Society, Providence (2007)Google Scholar
  9. 9.
    Chaumat J.: Unicité du prédual. C. R. Acad. Sci. Paris 288, 411–414 (1979)MATHMathSciNetGoogle Scholar
  10. 10.
    Dixmier J.: Formes linéaires sur un anneau d’opérateurs. Bull. Soc. Math. France 81, 9–39 (1953)MATHMathSciNetGoogle Scholar
  11. 11.
    Exel R.: Maximal subdiagonal algebras. Am. J. Math. 110, 775–782 (1988)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Foguel S.R.: Power of contraction in Hilbert space. Pacific J. Math. 13, 551–562 (1963)MATHMathSciNetGoogle Scholar
  13. 13.
    Godefroy G.: Sous-espaces bien disposes de L 1-applications. Trans. Am. Math. Soc. 286, 227–249 (1984)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Godefroy G., Talagrand M.: Classes d’espaces de Banach à prédual unique. C. R. Acad. Sci. Paris Ser. I Math. 292, 323–325 (1981)MATHMathSciNetGoogle Scholar
  15. 15.
    Grothendieck A.: Une caractérisation vectorielle-mérique des espaces L1. Canad. J. Math. 7, 552–561 (1955)MATHMathSciNetGoogle Scholar
  16. 16.
    Hay D.M.: Closed projections and peak interpolation for operator algebras. Int. Equ. Oper. Theory 57, 491–512 (2007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 97, pp. 1979 x+243. Springer, BerlinGoogle Scholar
  18. 18.
    Marsalli M., West G.: Noncommutative H p spaces. J. Oper. Theory 40, 339–355 (1998)MATHMathSciNetGoogle Scholar
  19. 19.
    Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 10, 641–648 (1962)MATHGoogle Scholar
  20. 20.
    Pełczyński, A.: Banach spaces of analytic functions and absolutely summing operators, CBMS Regional Conference Series in Mathematics, vol. 30. American Mathematical Society, Providence (1977)Google Scholar
  21. 21.
    Pfitzner H.: L-summands in their biduals have Pełczyński’s property (V*). Stud. Math. 104, 91–98 (1963)MathSciNetGoogle Scholar
  22. 22.
    Pfitzner H.: Separable L-embedded Banach spaces are preduals. Bull. Lond. Math. Soc. 39, 1039–1044 (2007)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pisier, G., Xu, Q.: Non-commutative L p-spaces. In: Johnson, W.B., Lindenstrauss, J. (eds.) Handbook on Banach spaces, vol. 2. North-Holland, Amsterdam (2003)Google Scholar
  24. 24.
    Randrianantoanina N.: Hilbert transform associated with finite maximal subdiagonal algebras. J. Austral. Math. Soc. Ser. A 65(3), 388–404 (1998)MATHMathSciNetGoogle Scholar
  25. 25.
    Sakai S.: A characterization of W *-algebras. Pacific J. Math. 6, 763–773 (1956)MATHMathSciNetGoogle Scholar
  26. 26.
    Sakai S.: On linear functionals of W *-algebras. Proc. Jpn. Acad. 34, 571–574 (1958)MATHGoogle Scholar
  27. 27.
    Sewatari S.: Master thesis, Kyushu University (2007)Google Scholar
  28. 28.
    Strătilă Ş., Zsidó L.: Lectures on von Neumann Algebras. Abacus Press, Tunbridge Wells (1979)MATHGoogle Scholar
  29. 29.
    Takesaki M.: On the conjugate space of operator algebras. Tohôku Math. Jour. 10, 194–203 (1958)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Takesaki M.: On the singularity of a positive linear functional on operator algebra. Proc. Jpn. Acad. 30, 365–366 (1959)MathSciNetGoogle Scholar
  31. 31.
    Tomita M.: Spectral theory of operator algebras, I. Math. J. Okayama Univ. 9, 63–98 (1959)MathSciNetGoogle Scholar
  32. 32.
    Wojtaszczyk P.: On projections in spaces of bounded analytic functions with applications. Stud. Math. 65, 147–173 (1979)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Graduate School of MathematicsKyushu UniversityFukuokaJapan

Personalised recommendations