Mathematische Annalen

, Volume 342, Issue 3, pp 533–555

Bohr’s strip for vector valued Dirichlet series

  • Andreas Defant
  • Domingo García
  • Manuel Maestre
  • David Pérez-García
Article
  • 119 Downloads

Abstract

Bohr showed that the width of the strip (in the complex plane) on which a given Dirichlet series \({\sum a_n/ n^s, \, s \in \mathbb{C}}\), converges uniformly but not absolutely, is at most 1/2, and Bohnenblust-Hille that this bound in general is optimal. We prove that for a given infinite dimensional Banach space Y the width of Bohr’s strip for a Dirichlet series with coefficients an in Y is bounded by 1 - 1/Cot (Y), where Cot (Y) denotes the optimal cotype of Y. This estimate even turns out to be optimal, and hence leads to a new characterization of cotype in terms of vector valued Dirichlet series.

Mathematics Subject Classification (2000)

Primary 32A05 Secondary 46B07 46B09 46G20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andreas Defant
    • 1
  • Domingo García
    • 2
  • Manuel Maestre
    • 2
  • David Pérez-García
    • 3
  1. 1.Institute of MathematicsCarl von Ossietzky UniversityOldenburgGermany
  2. 2.Departamento de Análisis MatemáticoUniversidad de ValenciaBurjasot (Valencia)Spain
  3. 3.Departamento de Análisis MatemáticoUniversidad Complutense de MadridMadridSpain

Personalised recommendations