Mathematische Annalen

, Volume 342, Issue 2, pp 297–308 | Cite as

On Galois groups of unramified pro-p extensions



Let p be an odd prime satisfying Vandiver’s conjecture. We consider two objects, the Galois group X of the maximal unramified abelian pro-p extension of the compositum of all Z p -extensions of Q p ) and the Galois group \({\mathfrak{G}}\) of the maximal unramified pro-p extension of Q \({(\mu_{p^{\infty}})}\). We give a lower bound for the height of the annihilator of X as an Iwasawa module. Under some mild assumptions on Bernoulli numbers, we provide a necessary and sufficient condition for \({\mathfrak{G}}\) to be abelian. The bound and the condition in the two results are given in terms of special values of a cup product pairing on cyclotomic p-units. We obtain in particular that, for p  <  1,000, Greenberg’s conjecture that X is pseudo-null holds and \({\mathfrak{G}}\) is in fact abelian.


Galois Group Algebraic Extension Decomposition Group Inertia Subgroup Iwasawa Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balister P., Howson S.: Notes on Nakayama’s lemma for compact Λ-modules. Asian Math. J. 1, 224–229 (1997)MATHMathSciNetGoogle Scholar
  2. 2.
    Buhler J., Crandall R., Ernvall R., Metsänkylä T., Shokrollahi M.A.: Irregular primes and cyclotomic invariants to 12 million. J. Symbolic Comput. 31, 89–96 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Coates J., Fukaya T., Kato K., Sujatha R., Venjakob O.: The GL2 main conjecture for elliptic curves without complex multiplication. Publ. Math. Inst. Hautes Études Sci. 101, 163–208 (2005)MATHMathSciNetGoogle Scholar
  4. 4.
    Greenberg, R.: Iwasawa theory—past and present. In: Class Field Theory: Its Centenary and Prospect. Adv. Stud. Pure. Math. 30, 335–385 (2001)Google Scholar
  5. 5.
    Hachimori Y., Sharifi R.: On the failure of pseudo-nullity of Iwasawa modules. J. Alg. Geom. 14, 567–591 (2005)MATHMathSciNetGoogle Scholar
  6. 6.
    McCallum W., Sharifi R.: A cup product in the Galois cohomology of number fields. Duke Math. J. 120, 269–310 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Nguyen Quang Do T.: K 3 et formules de Riemann–Hurwitz p-adiques. K-theory 7, 429–441 (1993)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Sharifi R.: Iwasawa theory and the Eisenstein ideal. Duke Math. J. 120, 269–310 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Venjakob O.: A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory. J. Reine Angew. Math. 559, 153–191 (2003)MATHMathSciNetGoogle Scholar
  10. 10.
    Wingberg K.: On the maximal unramified p-extension of an algebraic number field. J. Reine Angew. Math. 440, 129–156 (1993)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada

Personalised recommendations