Mathematische Annalen

, Volume 341, Issue 4, pp 717–733 | Cite as

Holomorphic functions on bundles over annuli

  • Dan Zaffran


We consider a family \(\big\{ E_m(D,M) \big\}\) of holomorphic bundles constructed as follows:from any given \(M\in GL_n({\mathbb{Z}})\) , we associate a “multiplicative automorphism” \(\varphi\) of \(({\mathbb{C}}^*)^n\) . Now let \(D\subseteq ({\mathbb{C}}^*)^n\) be a \(\varphi\) -invariant Stein Reinhardt domain. Then E m (D, M) is defined as the flat bundle over the annulus of modulus m > 0, with fiber D, and monodromy \(\varphi\) . We show that the function theory on E m (D, M) depends nontrivially on the parameters m, M and D. Our main result is that
$$E_m(D,M) \text{\ is Stein if and only if\ } m \log \rho (M) \leq 2 \pi^2,$$
where ρ(M) denotes the max of the spectral radii of M and M −1. As corollaries, we: (1) obtain a classification result for Reinhardt domains in all dimensions; (2) establish a similarity between two known counterexamples to a question of J.-P. Serre; and (3) suggest a potential reformulation of a disproved conjecture of Siu Y.-T.


Stein Bounded Domain Holomorphic Function Laurent Series Stein Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baernstein, A., Kovalev, L.: Private communicationGoogle Scholar
  2. 2.
    Chen B.-Y. and Zhang J.-H. (2003). The Serre problem on certain bounded domains. Asian J. Math. 7(4): 511–518 zbMATHMathSciNetGoogle Scholar
  3. 3.
    Cœuré G. and Lœb J.-J. (1985). A counterexample to the Serre problem with a bounded domain of \({\mathbb{C}}^2\) as fiberAnn. Math. 122: 329–334 CrossRefGoogle Scholar
  4. 4.
    Demailly, J.-P.: Complex analytic and algebraic geometry.
  5. 5.
    Demailly J.-P. (1978). Un exemple de fibré holomorphe non de Stein à fibre \({\mathbb{C}}^2\) ayant pour base le disque ou le planInvent. Math. 48(3): 293–302 CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Diederich K. and Fornaess J. (1977). Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Invent. Math. 39: 129–141 CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Forstnerič, F.: The homotopy principle in complex analysis: a survey. Explorations in complex and Riemannian geometry. Contemp. Math., 332, Amer. Math. Soc., Providence, RI, pp. 73–99 (2003)Google Scholar
  8. 8.
    Fannjiang A. and Wołowski L. (2003). Lech noise induced dissipation in Lebesgue-measure preserving maps on d-dimensional torus. J. Stat. Phys. 113(1–2): 335–378 CrossRefzbMATHGoogle Scholar
  9. 9.
    Mok N. (1980). Le problème de Serre pour les surfaces de Riemann. C. R. Acad. Sci. Paris Sér. A–B 290(4): A179–A180 MathSciNetGoogle Scholar
  10. 10.
    Narasimhan R. (1962). The Levi problem for complex spaces. II. Math. Ann. 146: 195–216 CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Oeljeklaus K. and Zaffran D. (2006). Steinness of bundles with fiber a Reinhardt bounded domain. Bull. Soc. Math. France 134(4): 451–473 zbMATHMathSciNetGoogle Scholar
  12. 12.
    Pflug P. and Zwonek W. (2004). The Serre problem with Reinhardt fibers. Ann. Inst. Fourier 54(1): 129–146 zbMATHMathSciNetGoogle Scholar
  13. 13.
    Royden H.L. (1974). Holomorphic fiber bundles with hyperbolic fiber. Proc. Am. Math. Soc. 43: 311–312 CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Schinzel A. and Zassenhaus H. (1965). A refinement of two theorems of Kronecker. Mich. Math. J. 12: 81–85 CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Shimizu S. (1989). Automorphisms of bounded Reinhardt domains. Jpn. J. Math. (N.S.) 15(2): 385–414 zbMATHMathSciNetGoogle Scholar
  16. 16.
    Siu Y.T. (1976). Holomorphic fiber bundles whose fibers are bounded Stein domains with zero first Betti number. Math. Ann. 219(2): 171–192 CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Skoda H. (1977). Fibrés holomorphes à base et à fibre de Stein. Invent. Math. 43(2): 97–107 CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Smyth, C.J.: The Mahler measure of algebraic numbers: a survey.
  19. 19.
    Stehlé J.-L. (1974). Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques. C. R. Acad. Sci. Paris Sér. A 279: 235–238 zbMATHGoogle Scholar
  20. 20.
    Titchmarsh, E.C.: Theory of functions, 2nd edn. Oxford University Press, Oxford (1939)zbMATHGoogle Scholar
  21. 21.
    Voutier P. (1996). An effective lower bound for the height of algebraic numbers. Acta Arith. 74: 81–95 MathSciNetGoogle Scholar
  22. 22.
    Zaffran D. (2001). Serre problem and Inoue-Hirzebruch surfaces. Math. Ann. 319(2): 395–420 CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Fudan UniversityShanghaiChina
  2. 2.Academia SinicaTaipeiTaiwan

Personalised recommendations