Mathematische Annalen

, Volume 341, Issue 2, pp 429–454 | Cite as

A parabolic almost monotonicity formula

  • Anders Edquist
  • Arshak Petrosyan


We prove the parabolic counterpart of the almost monotonicity formula of Caffarelli, Jerison and Kening for pairs of functions u ±(x, s) in the strip \(S_1 = {\mathbb{R}}^n \times (-1, 0]\) satisfying
$$u_\pm \geq 0,\quad (\Delta - \partial_s)u_\pm \geq -1, \quad u_+\cdot u_- = 0 \quad {\rm in}S_1.$$
We also establish a localized version of the formula as well as prove one of its variants. At the end of the paper we give an application to a free boundary problem related to the caloric continuation of heat potentials.

Mathematics Subject Classification (2000)

Primary 35K10 Secondary 35R35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alt, H.W., Caffarelli, L.A., Friedman, A.: Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc. 282(2), 431–461 (1984). MR732100 (85h:49014)Google Scholar
  2. 2.
    Beckner, W., Kenig, C., Pipher, J.: A convexity property of eigenvalues with applications (1998, unpublished)Google Scholar
  3. 3.
    Caffarelli, L.A.: A monotonicity formula for heat functions in disjoint domains. Boundary value problems for partial differential equations and applications, pp. 53–60 (1993)Google Scholar
  4. 4.
    Caffarelli L.A. (1987). A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are C 1,α. Rev. Mat. Iberoam. 3(2): 139–162 zbMATHMathSciNetGoogle Scholar
  5. 5.
    Caffarelli L.A. (1989). A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz. Comm. Pure Appl. Math. 42(1): 55–78 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Caffarelli L.A. (1988). A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness and dependence on X. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15(4): 583–602 zbMATHMathSciNetGoogle Scholar
  7. 7.
    Caffarelli L.A. (1995). Uniform Lipschitz regularity of a singular perturbation problem. Diff. Integr. Equ. 8(7): 1585–1590 zbMATHMathSciNetGoogle Scholar
  8. 8.
    Caffarelli L.A., Jerison D. and Kenig C.E. (2002). Some new monotonicity theorems with applications to free boundary problems. Ann. Math. 155(2): 369–404 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Caffarelli L.A. and Kenig C.E. (1998). Gradient estimates for variable coefficient parabolic equations and singular perturbation problems. Am. J. Math. 120(2): 391–439 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Caffarelli L.A., Karp L. and Shahgholian H. (2000). Regularity of a free boundary with application to the Pompeiu problem. Ann. of Math. (2) 151(1): 269–292 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Caffarelli, L., Petrosyan, A., Shahgholian, H.: Regularity of a free boundary in parabolic potential theory. J. Am. Math. Soc. 17(4), 827–869 (2004, electronic)Google Scholar
  12. 12.
    Duvaut, G.: Résolution d’un problème de Stefan (fusion d’un bloc de glace à zéro degré). C. R. Acad. Sci. Paris Sér. A–B 276, A1461–A1463, (1973, French)Google Scholar
  13. 13.
    Gross L. (1975). Logarithmic Sobolev inequalities. Am. J. Math. 97(4): 1061–1083 CrossRefGoogle Scholar
  14. 14.
    Lieberman G.M. (1996). Second order parabolic differential equations. World Scientific Publishing Co. Inc., River Edge zbMATHGoogle Scholar
  15. 15.
    Shahgholian H. (2003). C 1,1 regularity in semilinear elliptic problems. Comm. Pure Appl. Math. 56(2): 278–281 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Uraltseva, N.N.: Two-phase obstacle problem. J. Math. Sci. (New York) 106(3), 3073–3077 (2001, Function theory) and phase transitionsGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of MathematicsRoyal Institute of TechnologyStockholmSweden
  2. 2.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations