Advertisement

Mathematische Annalen

, Volume 340, Issue 2, pp 437–463 | Cite as

A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields

  • Robert L. Bryant
  • Gianni Manno
  • Vladimir S. Matveev
Article

Abstract

We give a complete list of normal forms for the two-dimensional metrics that admit a transitive Lie pseudogroup of geodesic-preserving transformations and we show that these normal forms are mutually non-isometric. This solves a problem posed by Sophus Lie.

Keywords

Normal Form Constant Curvature Connected Domain Regular Point Projective Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aminova, A.V.: A Lie problem, projective groups of two-dimensional Riemann surfaces, and solitons. Izv. Vyssh. Uchebn. Zaved. Mat. 1990, 6:3–10, translation in Soviet Math. (Iz. VUZ) 34(6):1–9 (1990)Google Scholar
  2. 2.
    Aminova A.V. (2003). Projective transformations of pseudo-Riemannian manifolds. Geometry 9. Math. Sci. (N. Y.) 113(3): 367–470 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beltrami E. (1865). Resoluzione del problema: riportari i punti di una superficie sopra un piano in modo che le linee geodetische vengano rappresentante da linee rette. Ann. Mat. 1(7): 185–204 Google Scholar
  4. 4.
    Benenti S. (2005). Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems. Acta Appl. Math. 87(1–3): 33–91 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bryant, R.L., Manno, G., Matveev, V.S.: A solution of a problem of Sophus Lie: normal forms of 2-dim metrics admitting two projective vector fields. arXiv:0705.3592Google Scholar
  6. 6.
    Cartan E. (1924). Sur les variétés à connexion projective. Bull. Soc. Math. Fr. 52: 205–241 MathSciNetzbMATHGoogle Scholar
  7. 7.
    Darboux, G.: Leçons sur la théorie générale des surfaces, vol. III. Chelsea Publishing (1896); Bronx, N.Y., 1972Google Scholar
  8. 8.
    Eastwood, M.: Notes on projective differential geometry, Symmetries and Overdetermined Systems of Partial Differential Equations (Minneapolis, MN, 2006), pp. 41–61, IMA Vol. Math. Appl., 144, Springer, New York (2007)Google Scholar
  9. 9.
    Eastwood, M., Matveev, V.S.: Metric connections in projective differential geometry. Symmetries and Overdetermined Systems of Partial Differential Equations (Minneapolis, MN, 2006), pp. 339–351, IMA Vol. Math. Appl., 144, Springer, New York (2007)Google Scholar
  10. 10.
    Ibragimov N. (1991). Essay on the Group Analysis of Ordinary Differential Equations. Znanie, Moscow Google Scholar
  11. 11.
    Kalnins, E.G., Kress, J.M., Miller, W. Jr.: Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform. J. Math. Phys. 46(5) (2005)Google Scholar
  12. 12.
    Knebelman M.S. (1930). On groups of motion in related spaces. Am. J. Math. 52: 280–282 CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Koenigs, G.: Sur les géodesiques a intégrales quadratiques. Note II from Darboux’ ‘Leçons sur la théorie générale des surfaces’, vol. IV. Chelsea Publishing (1896); Bronx, N.Y., 1972Google Scholar
  14. 14.
    Kowalski O., Vlasek Z. (2007). Classification of locally projectively homogeneous torsion-less affine connections in the plane domains. Beiträge zur Algebra und Geometrie 48(1): 11–26 zbMATHMathSciNetGoogle Scholar
  15. 15.
    Lagrange, J.-L.: Sur la construction des cartes géographiques. Novéaux Mémoires de l’Académie des Sciences et Bell-Lettres de Berlin (1779)Google Scholar
  16. 16.
    Lie, S.: Untersuchungen über geodätische Kurven. Math. Ann. 20 (1882); Sophus Lie Gesammelte Abhandlungen, Band 2, erster Teil, pp. 267–374. Teubner, Leipzig (1935)Google Scholar
  17. 17.
    Lie, S.: Classification und Integration von gewöhnlichen Differentialgleichungen zwischen x, y, de eine Gruppe von Transformationen gestatten, III. Norwegian Archives (1883); also appeared in Mathematische Annalen 32, 213–281 (1888)Google Scholar
  18. 18.
    Lie S. (1912). Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformation. Teubner, Leipzig Google Scholar
  19. 19.
    Liouville R. (1889). Sur les invariants de certaines équations différentielles et sur leurs applications. Journal de l’École Polytechnique 59: 7–76 Google Scholar
  20. 20.
    Matveev V.S., Topalov P.J. (1998). Trajectory equivalence and corresponding integrals. Regul. Chaotic Dyn. 3(2): 30–45 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Matveev V.S., Topalov P.J. (1999). Geodesic equivalence of metrics on surfaces and their integrability. Dokl. Math. 60(1): 112–114 Google Scholar
  22. 22.
    Matveev V.S., Topalov P.J. (2000). Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. ERA AMS 6: 98–104 zbMATHMathSciNetGoogle Scholar
  23. 23.
    Matveev V.S. (2004). Die Vermutung von Obata für Dimension 2. Arch. Math. 82: 273–281 zbMATHCrossRefGoogle Scholar
  24. 24.
    Matveev V.S. (2004). Solodovnikov’s theorem in dimension two. Dokl. Math. 69(3): 338–341 zbMATHGoogle Scholar
  25. 25.
    Matveev V.S. (2005). Lichnerowicz-Obata conjecture in dimension two. Commun. Math. Helv. 81(3): 541–570 CrossRefGoogle Scholar
  26. 26.
    Matveev V.S. (2007). Proof of projective Lichnerowicz-Obata conjecture. J. Differ. Geom. 75: 459–502 zbMATHGoogle Scholar
  27. 27.
    Matveev V.S. (2006). Geometric explanation of Beltrami theorem. Int. J. Geom. Methods Mod. Phys. 3(3): 623–629 zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Romanovskiǐ, Yu.R.: Calculation of local symmetries of second-order ordinary differential equations by Cartan’s equivalence method. Mat. Zametki 60(1), 75–91, 159 (1996); English translation in Math. Notes 60(1–2), 56–67 (1996)Google Scholar
  29. 29.
    Schouten J.A. (1926). Erlanger Programm und Übertragungslehre. Neue Gesichtspunkte zur Grundlegung der Geometrie. Rendiconti Palermo 50: 142–169 Google Scholar
  30. 30.
    Solodovnikov, A.S.: Projective transformations of Riemannian spaces. Uspehi Mat. Nauk (N.S.) 11, 4(70), 45–116 (1956)Google Scholar
  31. 31.
    Solodovnikov A.S. (1961). Spaces with common geodesics. Trudy Sem. Vektor. Tenzor. Anal. 11: 43–102 MathSciNetGoogle Scholar
  32. 32.
    Solodovnikov A.S. (1963). Geometric description of all possible representations of a Riemannian metric in Levi-Civita form. Trudy Sem. Vektor. Tenzor. Anal. 12: 131–173 MathSciNetGoogle Scholar
  33. 33.
    Solodovnikov A.S. (1969). The group of projective transformations in a complete analytic Riemannian space. Dokl. Akad. Nauk SSSR 186: 1262–1265 MathSciNetGoogle Scholar
  34. 34.
    Topalov P.J., Matveev V.S. (2003). Geodesic equivalence via integrability. Geometriae Dedicata 96: 91–115 zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Topalov P.J. (2002). Comutative conservation laws for geodesic flows of metrics admitting projective symmetry. Math. Res. Lett. 9: 65–72 zbMATHMathSciNetGoogle Scholar
  36. 36.
    Tresse A. (1894). Sur les invariants différentiels des groupes continus de transformations. Acta Math. 18: 1–88 CrossRefMathSciNetGoogle Scholar
  37. 37.
    Tresse, A.: Détermination des invariants ponctuels de léquation différentielle ordinaire du second ordre \(y'' = \omega (x,y,y').\) Leipzig. 87 S. gr. 8° (1896)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Robert L. Bryant
    • 1
  • Gianni Manno
    • 2
  • Vladimir S. Matveev
    • 3
  1. 1.Mathematical Sciences Research InstituteBerkeleyUSA
  2. 2.Department of MathematicsLecceItaly
  3. 3.Institute of MathematicsFSU JenaJenaGermany

Personalised recommendations