Mathematische Annalen

, Volume 339, Issue 4, pp 839–877

Rate of Type II blowup for a semilinear heat equation

Article

Abstract

A solution u of a Cauchy problem for a semilinear heat equation
$$\left\{ \begin{array}{ll}u_{t} = \Delta u + u^{p} & \quad {\rm in}\, {\bf R}^N \times (0,\,T),\\u(x,0) = u_{0}(x) \geq 0 & \quad {\rm in}\, {\bf R}^N \end{array} \right.$$
is said to undergo Type II blowup at tT if lim sup \(_{t \nearrow T} \; (T-t)^{1/(p-1)} |u(t)|_\infty = \infty .\) Let \(\varphi_\infty\) be the radially symmetric singular steady state. Suppose that \(u_0 \in L^\infty\) is a radially symmetric function such that \(u_0 - \varphi_\infty\) and (u0)t change sign at most finitely many times. We determine the exact blowup rate of Type II blowup solution with initial data u0 in the case of p > pL, where pL is the Lepin exponent.

Mathematics Subject Classification (2000)

35K20 35K55 58K57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angenent S.B. (1988). The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390: 79–96 MATHMathSciNetGoogle Scholar
  2. 2.
    Chen X.-Y. and Poláčik P. (1996). Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball. J. Reine Angew. Math. 472: 17–51 MATHMathSciNetGoogle Scholar
  3. 3.
    Dold J.W., Galaktionov V.A., Lacey A.A. and Vázquez J.L. (1998). Rate of approach to a singular steady state in quasilinear reaction-diffusion equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26: 663–687 MATHMathSciNetGoogle Scholar
  4. 4.
    Fillippas S. and Kohn R.V. (1992). Refined asymptotics for the blowup of u t − Δuu p. Comm. Pure Appl. Math. 45: 821–869 CrossRefMathSciNetGoogle Scholar
  5. 5.
    Giga Y. and Kohn R.V. (1987). Characterizing blow-up using selfsimilarity variables, Indiana University. Math. J. 36: 1–40 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Henry D. (1981). Geometric theory of semilinear parabolic equations. Springer, New York MATHGoogle Scholar
  7. 7.
    Herrero M.A. and Velázquez J.J.L. (1993). Blow-up behaviour of one-dimensional semilinear parabolic equations. Ann. Inst. H. Poinaré 10: 131–189 MATHGoogle Scholar
  8. 8.
    Herrero M.A. and Velázquez J.J.L. (1994). Explosion de solutions des équations paraboliques semilinéaires supercritiques. C. R. Acad. Sci. Paris 319: 141–145 MATHGoogle Scholar
  9. 9.
    Herrero, M.A., Velázquez, J.J.L.: A blow up result for semilinear heat equations in the supercritical case. preprintGoogle Scholar
  10. 10.
    Li Y. (1992). Asymptotic behavior of positive solutions of equation Δu + K(x) u p = 0 in R N. J. Diff. Eqn. 95: 304–330 MATHCrossRefGoogle Scholar
  11. 11.
    Matano H. and Merle F. (2004). On non-existence of Type II blow-up for a supercritical nonlinear heat equation. Comm. Pure Appl. Math. 57: 1494–1541 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mizoguchi N. (2004). Blowup behavior of solutions for a semilinear heat equation with supercritical nonlinearity. J. Diff. Eqn. 205: 298–328 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Mizoguchi N. (2004). Type II blowup for a semilinear heat equation. Adv. Diff. Eqn. 9: 1279–1316 MATHMathSciNetGoogle Scholar
  14. 14.
    Mizoguchi N. (2005). Boundedness of global solutions for a supercritical semilinear heat equation and its application. Indiana Univ. Math. J. 54: 1047–1059 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Velázquez J.J.L. (1993). Classification of singularities for blowing up solutions in higher dimensions. Trans. Amer. Math. Soc. 338: 441–464 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of MathematicsTokyo Gakugei UniversityTokyoJapan

Personalised recommendations