Mathematische Annalen

, Volume 338, Issue 3, pp 545–554 | Cite as

An interpolation theorem for proper holomorphic embeddings

  • Franc Forstnerič
  • Björn Ivarsson
  • Frank Kutzschebauch
  • Jasna Prezelj
Article

Abstract

Given a Stein manifold x of dimension n > 1, a discrete sequence \(\{a_j\}\subset X\), and a discrete sequence \(\{b_j\}\subset \mathbb{C}^{m}\) where \(m\ge N=\left[\frac{3n}{2}\right] + 1\), there exists a proper holomorphic embedding \(f\colon X\hookrightarrow \mathbb{C}^{m}\) satisfying f(aj) = bj for every j = 1,2,...

Mathematics Subject Classification (2000)

32C22 32E10 32H05 32M17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acquistapace F., Broglia F. and Tognoli A. (1975). A relative embedding theorem for Stein spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2(4): 507–522 MATHMathSciNetGoogle Scholar
  2. 2.
    Andersén, E., Lempert, L.: On the group of holomorphic automorphisms of \(\mathbb{C}^n\). Inventiones Math. 110, 371–388 (1992)Google Scholar
  3. 3.
    Bishop E. (1961). Mappings of partially analytic spaces. Amer. J. Math. 83: 209–242 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Buzzard G.T. and Forstnerič F. (1997). A Carleman type theorem for proper holomorphic embeddings. Ark. Mat. 35: 157–169 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Buzzard, G.T., Forstnerič, F.: An interpolation theorem for holomorphic automorphisms of \(\mathbb{C}^n\). J. Geom. Anal. 10, 101–108 (2000)Google Scholar
  6. 6.
    Eliashberg Y. and Gromov M. (1992). Embeddings of Stein manifolds. Ann. Math. 136: 123–135 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fornæss Wold, E.: Proper holomorphic embeddings of finitely and some infinitely connected subsets of \(\mathbb{C}\) into \(\mathbb{C}^2\). Math. Z. 252, 1–9Google Scholar
  8. 8.
    Fornæss Wold, E.: Embedding Riemann surfaces properly into \(\mathbb{C}^2\). Int. J. Math. 17, 963–974 (2006)Google Scholar
  9. 9.
    Forster O. (1970). Plongements des variétés de Stein. Comm. Math. Helv. 45: 170–184 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Forstnerič, F.: Interpolation by holomorphic automorphisms and embeddings in \(\mathbb{C}^2\). J. Geom. Anal.9, 93–118 (1999)Google Scholar
  11. 11.
    Forstnerič F. (2003). The homotopy principle in complex analysis: a survey. Contemp. Math. 332: 73–99 Google Scholar
  12. 12.
    Forstnerič F., Globevnik, J., Rosay, J.-P.: Non straightenable complex lines in \(\mathbb{C}^2\). Ark. Mat. 34, 97–101 (1996)Google Scholar
  13. 13.
    Forstneric, F., Rosay, J.-P.: Approximation of biholomorphic mappings by automorphisms of \(\mathbb{C}^n\). Invent. Math. 112, 323–349 (1993); Invent. Math. 118, 573–574 (1994)Google Scholar
  14. 14.
    Forstnerič F. and Prezelj J. (2002). Oka’s principle for holomorphic submersions with sprays. Math. Ann. 322: 633–666 CrossRefMathSciNetGoogle Scholar
  15. 15.
    Globevnik, J.: Interpolation by proper holomorphic embeddings of the disc into \(\mathbb{C}^2\). Math. Res. Lett. 9, 567–577 (2002)Google Scholar
  16. 16.
    Globevnik, J., Stensønes, B.: Holomorphic embeddings of planar domains into \(\mathbb{C}^2\). Math. Ann.303, 579–597 (1995)Google Scholar
  17. 17.
    Gromov M. (1989). Oka’s principle for holomorphic sections of elliptic bundles. J. Amer. Math. Soc. 2: 851–897 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gromov M. and Eliashberg Y. (1971). Nonsingular maps of Stein manifolds. Funct. Anal. Appl. 5: 82–83 CrossRefGoogle Scholar
  19. 19.
    Gunning R.C. and Rossi H. (1965). Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs MATHGoogle Scholar
  20. 20.
    Kaliman S. (1995). Some facts about Eisenman intrinsic measures. Complex Variables Theory Appl. 27: 163–173 MATHMathSciNetGoogle Scholar
  21. 21.
    Kutzschebauch F. (2005). Some results on embedding Stein spaces with interpolation. Ark. Math. 43: 419–425 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Narasimhan R. (1960). Imbedding of holomorphically complete complex spaces. Amer. J. Math. 82: 917–934 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Prezelj J. (2003). Interpolation of embeddings of Stein manifolds on discrete sets. Math. Ann. 326: 275–296 MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Rosay, J.-P., Rudin, W.: Holomorphic maps from \(\mathbb{C}^n\) to \(\mathbb{C}^n\). Trans. Amer. Math. Soc. 310, 47–86 (1988)Google Scholar
  25. 25.
    Schürmann J. (1997). Embeddings of Stein spaces into affine spaces of minimal dimension. Math. Ann. 307: 381–399 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Franc Forstnerič
    • 1
  • Björn Ivarsson
    • 2
  • Frank Kutzschebauch
    • 2
  • Jasna Prezelj
    • 1
  1. 1.Institute of Mathematics, Physics and MechanicsUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Institute of MathematicsUniversity of BernBernSwitzerland

Personalised recommendations