Mathematische Annalen

, Volume 335, Issue 4, pp 965–989 | Cite as

The pseudo-effective cone of a non-Kählerian surface and applications

  • Andrei Teleman


We describe the positive cone and the pseudo-effective cone of a non-Kählerian surface. We use these results for two types of applications:

1. Describe the set Open image in new window of possible total Ricci scalars associated with Gauduchon metrics of fixed volume 1 on a fixed non-Kählerian surface, and decide whether the assignment Open image in new window is a deformation invariant.

2. Study the stability of the canonical extension

Open image in new window

of a class VII surface X with positive b 2. This extension plays an important role in our strategy to prove existence of curves on class VII surfaces, using gauge theoretical methods [Te2].

Our main tools are Buchdahl ampleness criterion for non-Kählerian surfaces [Bu2] and the recent results of Dloussky-Oeljeklaus-Toma [DOT] and Dloussky [D] on class VII surfaces with curves.

Mathematics Subject Classification (2000)

32J15 32Q57 32L05 32G13 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barth, W., Hulek, K., Peters, Ch., Van de Ven, A.: Compact complex surfaces. Springer, 2004Google Scholar
  2. 2.
    Bogomolov, F.: Classification of surfaces of class VII0 with b 2 = 0. Math. USSR Izv. 10, 255–269 (1976)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bogomolov, F.: Surfaces of class VII0 and affine geometry. Math. USSR Izv. 21, 31–73 (1983)CrossRefGoogle Scholar
  4. 4.
    Buchdahl, N.: Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math. Ann. 280, 625–648 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Buchdahl, N.: A Nakai-Moishezon criterion for non-Kahler surfaces. Ann. Inst. Fourier 50, 1533–1538 (2000)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Dloussky, G.: On surfaces of class VII+ 0 with numerically anti-canonical divisor. J. AMS, to appearGoogle Scholar
  7. 7.
    Demailly, J.P.: Regularization of closed positive currents and intersection theory. J. Alg. Geom. 1, 361–409 (1992)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Demailly, J.P., Peternell, Th., Schneider, M.: Pseudo-effective line bundles on compact Kähler manifolds. International J. Math. 6, 689–741 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dloussky, G., Oeljeklaus, K., Toma, M.: Class VII0 surfaces with b 2 curves. Tohoku Math. J. (2) 55(2), 283–309 (2003)Google Scholar
  10. 10.
    Donaldson, S.K.: The orientation of Yang-Mills moduli space and 4-manifolds topology. J. Differential Geometry 26, 397–428 (1987)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Enoki, I: Surfaces of class VII0 with curves. Tohuku Math. J. 33, 453–492 (1981)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Gauduchon, P.: Sur la 1-forme de torsion d'une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Harvey, R., Lawson, B.: An intrinsic characterisation of Kähler manifolds. Invent. Math. 74, 169–198 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Inoue, M.: New surfaces with no meromorphic functions. Proc. Int. Congr. Math. Vancouver 1974, pp. 423–426, 1976Google Scholar
  15. 15.
    Kato, M.: Compact complex manifolds containing ``global'' spherical shells. Proc. Japan Acad. 53(1), 15–16 (1977)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kato, M.: Compact complex manifolds containing ``global'' spherical shells. I. Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, pp. 45–84Google Scholar
  17. 17.
    Kato, M.: On a certain class of nonalgebraic non-Khler compact complex manifolds. Recent progress of algebraic geometry in Japan, North-Holland. Math. Stud. 73, North-Holland Amsterdam, 1983, pp. 28–50Google Scholar
  18. 18.
    Lamari, A.: Courants kähleriens et surfaces compactes. Ann. Inst. Fourier 49(1), 263–285 (1999)MathSciNetGoogle Scholar
  19. 19.
    Lamari, A.: Le cône kählerien d'une surface. J. Math. Pures Appl. (9) 78(3), 249–263 (1999)Google Scholar
  20. 20.
    Lübke, M., Teleman, A.: The Kobayashi-Hitchin correspondence. World Scientific Publishing Co. 1995Google Scholar
  21. 21.
    Li, J., Yau, S. T.: Hermitian Yang-Mills connections on non-Kähler manifolds. Math. aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys. 1, World Scientific Publishing, 1987, pp. 560–573Google Scholar
  22. 22.
    Li, J., Yau, S. T., Zheng, F.: On projectively flat Hermitian manifolds. Comm. in Analysis and Geometry, 2, 103–109 (1994)zbMATHGoogle Scholar
  23. 23.
    Nakamura, I.: On surfaces of class VII0 surfaces with curves. Invent. Math. 78, 393–443 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Nakamura, I.: Towards classification of non-Kählerian surfaces. Sugaku Expositions. 2(2), 209–229 (1989)Google Scholar
  25. 25.
    Nakamura, I.: On surfaces of class VII0 surfaces with curves II. Tôhuku Math. J. 42(4), 475–516 (1990)Google Scholar
  26. 26.
    Teleman, A.: Projectively flat surfaces and Bogomolov's theorem on class VII0 - surfaces. Int. J. Math. 5(2), 253–264 (1994)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Teleman, A.: Donaldson theory on non-Kählerian surfaces and class VII surfaces with b 2=1. Invent. Math 162, 493–521 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Teleman, A.: Instantons and curves on class VII surfaces, in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.LATP, CMIUniversité de ProvenceMarseille Cedex 13France

Personalised recommendations