Advertisement

Mathematische Annalen

, Volume 338, Issue 1, pp 207–239 | Cite as

The rational cohomology of \({\overline{\mathcal{M}_4}}\)

  • Jonas Bergström
  • Orsola Tommasi
Article

Abstract

We present two approaches to the study of the cohomology of moduli spaces of curves. Together, they allow us to compute the rational cohomology of the moduli space \({\overline{\mathcal{M}_4}}\) of stable complex curves of genus 4, with its Hodge structure.

Mathematics Subject Classification (2000)

14H10 11G20 55R80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbarello E. and Cornalba M. (1998,1999). Calculating cohomology groups of moduli spaces of curves via algebraic geometry. Inst. Hautes Études Sci. Publ. Math. 88: 97–127 MathSciNetGoogle Scholar
  2. 2.
    Behrend, K.A.: The Lefschetz trace formula for the moduli stack of bundles. Ph.D. Thesis, University of California, Berkeley (1991). Available at http://www.math. ubc.ca/people/faculty/behrend/thesis.htmlGoogle Scholar
  3. 3.
    Behrend K.A. (1993). The Lefschetz trace formula for algebraic stacks. Invent. Math. 112(1): 127–149 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bergström, J.: Equivariant counts of points of the moduli spaces of pointed hyperelliptic curves. (In preparation)Google Scholar
  5. 5.
    Bergström, J.: Cohomology of moduli spaces of curves of genus three via point counts. (In preparation)Google Scholar
  6. 6.
    van den Bogaart, T., Edixhoven, B.: Algebraic stacks whose number of points over finite fields is a polynomial. In: Number Fields and Function Fields—Two Parallel Worlds. Progr. Math., vol. 239, pp. 39–49. Birkhäuser Boston, Boston (2005). Preprint available at arxiv:math.AG/0505178Google Scholar
  7. 7.
    Boggi M. and Pikaart M. (2000). Galois covers of moduli of curves. Compos. Math. 120(2): 171–191 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Deligne P. (1974). Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44: 5–77 MATHMathSciNetGoogle Scholar
  9. 9.
    Deligne P. and Mumford D. (1969). The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36: 75–109 MATHMathSciNetGoogle Scholar
  10. 10.
    Faber, C.: Private communication (2006)Google Scholar
  11. 11.
    Faber C. and van der Geer G. (2004). Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes. I. C. R. Math. Acad. Sci. Paris 338(5): 381–384 MATHMathSciNetGoogle Scholar
  12. 12.
    Faber C. and van der Geer G. (2004). Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes. II. C. R. Math. Acad. Sci. Paris 338(6): 467–470 MATHMathSciNetGoogle Scholar
  13. 13.
    Fulton, W.: Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2. Springer, Berlin Heidelberg New York (1998)Google Scholar
  14. 14.
    Fulton, W., Harris, J.: Representation theory. In: Graduate Texts in Mathematics, vol. 129. Springer, Berlin Heidelberg New York (1991)Google Scholar
  15. 15.
    van der Geer G. and van der Vlugt M. (1992). Supersingular curves of genus 2 over finite fields of characteristic 2. Math. Nachr. 159: 73–81 MATHMathSciNetGoogle Scholar
  16. 16.
    Getzler, E.: Operads and moduli spaces of genus 0 Riemann surfaces. In: The Moduli Space of Curves (Texel Island, 1994), Progr. Math., vol. 129, pp. 199–230. Birkhäuser Boston, Boston (1995)Google Scholar
  17. 17.
    Getzler, E.: Mixed Hodge structures of configuration spaces. Report MPI-96–61, Max Planck Institut (1996). Preprint available at arXiv:alg-geom/9510018Google Scholar
  18. 18.
    Getzler E. (1998). The semi-classical approximation for modular operads. Comm. Math. Phys. 194(2): 481–492 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Getzler, E.: Topological recursion relations in genus 2. In: Integrable systems and Algebraic Geometry (Kobe/Kyoto, 1997), pp. 73–106. World Science Publishing, River Edge (1998)Google Scholar
  20. 20.
    Getzler E. (1999). Resolving mixed Hodge modules on configuration spaces. Duke Math. J. 96(1): 175–203 MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Getzler E. and Kapranov M.M. (1998). Modular operads. Compositio Math. 110(1): 65–126 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Getzler, E., Looijenga, E.: The Hodge polynomial of \(\overline{ \mathcal{M}}_{3,1}\). Preprint available at arXiv:math.AG/9910174Google Scholar
  23. 23.
    Gorinov, A.: Real cohomology groups of the space of nonsingular curves of degree 5 in C P 2. Ann. Fac. Toulouse Math. (6) 14(3), 395–434 (2005). Preprint available at arXiv:math.AT/0105108Google Scholar
  24. 24.
    Hartshorne R. (1977). Algebraic geometry. Springer, Berlin Heidelberg New York MATHGoogle Scholar
  25. 25.
    Katz, N.M., Sarnak, P.: Random matrices, Frobenius eigenvalues, and monodromy. In: American Mathematical Society Colloquium Publications, vol. 45. American Mathematical Society, Providence(1999)Google Scholar
  26. 26.
    Kisin M. and Lehrer G.I. (2002). Equivariant Poincaré polynomials and counting points over finite fields. J. Algebra 247(2): 435–451 MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Knudsen F.F. (1983). The projectivity of the moduli space of stable curves. II. The stacks M g,n. Math. Scand.52(2): 61–199 Google Scholar
  28. 28.
    Looijenga, E.: Cohomology of \({\mathcal M}_ 3\) and \({\mathcal M}^ 1_ 3\). In: Mapping Class Groups and Moduli Spaces of Riemann Surfaces (Göttingen, 1991/Seattle, WA, 1991), Contemp. Math., vol. 150, pp. 205–228. American Mathematical Society, Providence (1993)Google Scholar
  29. 29.
    Mac Lane, S.: Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, 2 edn. Springer Berlin Heidelberg, New York (1998)Google Scholar
  30. 30.
    Milne, J.S.: Étale cohomology. In: Princeton Mathematical Series, vol. 33. Princeton University Press, Princeton (1980)Google Scholar
  31. 31.
    Peters, C.A.M., Steenbrink, J.H.M.: Degeneration of the Leray spectral sequence for certain geometric quotients. Mosc. Math. J. 3(3), 1085–1095, 1201 (2003). Preprint available at arXiv:math.AG/0112093Google Scholar
  32. 32.
    Stembridge, J.: SF, a Maple package for symmetric functions. It is available at http://www.math.lsa.umich.edu/~jrs/maple.htmlGoogle Scholar
  33. 33.
    Tommasi O. (2005). Rational cohomology of the moduli space of genus 4 curves. Compos. Math. 141(2): 359–384 MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Vassiliev V.A. (1999). How to calculate the homology of spaces of nonsingular algebraic projective hypersurfaces. Proc. Steklov Inst. Math. 225(2): 121–140 MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institutionen för matematikKungliga Tekniska högskolanStockholmSweden
  2. 2.IMAPPRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations