Mathematische Annalen

, Volume 338, Issue 2, pp 249–282 | Cite as

One-cusped congruence subgroups of Bianchi groups



We show that there are only finitely many maximal congruence subgroups of the Bianchi groups such that the quotient by \(\mathbb{H}^3\) has only one cusp.

Mathematics Subject Classification (2000)

Bianchi Group Congruence Subgroup Arithmetic Manifold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, M.D., Reid, A.W.: Arithmetic knots in closed 3-manifolds. J. Knot Theory Ramif. 11(6), 903–920 (2002). Knots 2000 Korea, vol. 3 (Yongpyong)Google Scholar
  2. 2.
    Brunner A.M., Frame M.L., Lee Y.W. and Wielenberg N.J. (1984). Classifying torsion-free subgroups of the Picard group. Trans. Am. Math. Soc. 282(1): 205--235 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cannon, J.: Magma. University of Sydney, Sydney (2000)Google Scholar
  4. 4.
    Chinburg, T., Long, D., Reid, A.W.: Cusps of minimal non-compact arithmetic hyperbolic 3-orbifolds (submitted)(2006)Google Scholar
  5. 5.
    van der Geer, G.: Hilbert modular surfaces. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 16. Springer, Berlin Heidelberg New York (1988)Google Scholar
  6. 6.
    Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers. In: North-Holland Mathematical Library, 2nd edn., vol. 37. North-Holland Publishing Co., Amsterdam (1987)Google Scholar
  7. 7.
    Grunewald F. and Schwermer J. (1993). Subgroups of Bianchi groups and arithmetic quotients of hyperbolic 3-space. Trans. Am. Math. Soc. 335(1): 47--78 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Leininger C.J. (2002). Compressing totally geodesic surfaces. Topol. Appl. 118(3): 309--328 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Marcus, D.A.: Number fields. Springer, Berlin Heidelberg New York (1977). UniversitextGoogle Scholar
  10. 10.
    Newman, M.: Integral matrices. In: Pure and Applied Mathematics, vol. 45. Academic, New York (1972)Google Scholar
  11. 11.
    Petersen, K.L.: Counting cusps of subgroups of PSL2 \((\mathcal{O}_k)\) (submitted)Google Scholar
  12. 12.
    Petersen K.L. (2005). One-cusped congruence subgroups of PSL2 \((\mathcal{O}_k)\). Doctoral Thesis, University of Texas at AustinGoogle Scholar
  13. 13.
    Petersson H. (1953). Über einen einfachen typus von untergruppen der modulgruppe. Arch. Math. 4: 308--315 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Petersson H. (1971). Über die Konstruktion zykloider Kongruenzgruppen in der rationalen Modulgruppe. J. Reine Angew. Math. 250: 182--212 MATHMathSciNetGoogle Scholar
  15. 15.
    Reid A.W. (1991). Arithmeticity of knot complements. J. Lond. Math. Soc. 43(1): 171--184 MATHCrossRefGoogle Scholar
  16. 16.
    Serre J.-P. (1970). Le problème des groupes de congruence pour SL2. Ann. Math. 92(2): 489--527 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sunday J.G. (1972). Presentations of the groups sl(2, m) and psl(2, m). Can. J. Math. 24: 1129--1131 MATHMathSciNetGoogle Scholar
  18. 18.
    Suzuki, M.: Group theory I. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 247. Springer, Berlin Heidelberg New York (1982). Translated from the Japanese by the author.Google Scholar
  19. 19.
    Swinnerton-Dyer, H.P.F.: A brief guide to algebraic number theory. In: London Mathematical Society Student Texts, vol. 50. Cambridge University Press, Cambridge (2001)Google Scholar
  20. 20.
    Wohlfahrt K. (1964). An extension of f. klein’s level concept. Ill. J. Math. 8: 529--535MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada

Personalised recommendations