Mathematische Annalen

, Volume 336, Issue 3, pp 659–669 | Cite as

Lower Bound for the Poles of Igusa’s p-adic Zeta Functions



Let K be a p-adic field, R the valuation ring of K, P the maximal ideal of R and q the cardinality of the residue field R/P. Let f be a polynomial over R in n >1 variables and let χ be a character of \(R^{\times}\). Let Mi(u) be the number of solutions of f  =  u in (R/Pi)n for \(i \in \mathbb{Z}_{\geq 0}\) and\(u \in R/P^i\). These numbers are related with Igusa’s p-adic zeta function Zf(s) of f. We explain the connection between the Mi(u) and the smallest real part of a pole of Zf(s). We also prove that Mi(u) is divisible by \(q^{\ulcorner (n/2)(i-1)\urcorner}\), where the corners indicate that we have to round up. This will imply our main result: Zf(s) has no poles with real part less than  − n/2. We will also consider arbitrary K-analytic functions f.

Mathematics Subject Classification (2000)

Primary 11D79 11S80 Secondary 14B05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Denef, J. Report on Igusa’s local zeta function, Sém. Bourbaki 741, Astérisque 201/202/203, 359–386 (1991)Google Scholar
  2. 2.
    Denef, J., Loeser, F. Caractéristique d’Euler-Poincaré, fonctions zêta locales et modifications analytiques. J. Am. Math. Soc. 5, 4, 705–720 (1992)Google Scholar
  3. 3.
    Igusa, J. Lectures on Forms of Higher Degree. Tata Inst. Fund. Research, Bombay (1978)Google Scholar
  4. 4.
    Igusa, J. An Introduction to the theory of local zeta functions. Am. Math. Soc. Stud Adv Math. 14 (2000)Google Scholar
  5. 5.
    Loeser F. (1988) Fonctions d’Igusa p-adiques et polynômes de Bernstein. Am. J. Math. 110, 1–21MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Segers, D. Smallest poles of Igusa’s and topological zeta functions and solutions of polynomial congruences. Ph.D. Thesis, University of Leuven (2004) Available on Scholar
  7. 7.
    Segers D. (2006) On the smallest poles of Igusa’s p-adic zeta functions. Math. Zeitschrift 252, 429–455MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Segers D., Veys W. (2004) On the smallest poles of topological zeta functions. Compos Math. 140, 130–144MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Veys W. (1993) Poles of Igusa’s local zeta function and monodromy. Bull. Soc. Math. France 121, 545–598MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Departement WiskundeK.U.LeuvenLeuvenBelgium

Personalised recommendations