Mathematische Annalen

, 336:449

Two-dimensional incompressible viscous flow around a small obstacle

  • D. Iftimie
  • M. C. Lopes Filho
  • H. J. Nussenzveig Lopes


In this work we study the asymptotic behavior of viscous incompressible 2D flow in the exterior of a small material obstacle. We fix the initial vorticity ω0 and the circulation γ of the initial flow around the obstacle. We prove that, if γ is sufficiently small, the limit flow satisfies the full-plane Navier–Stokes system, with initial vorticity ω0  +  γδ, where δ is the standard Dirac measure. The result should be contrasted with the corresponding inviscid result obtained by the authors in Iftimie et al. (Comm. Part. Differ. Eqn. 28, 349–379 (2003)), where the effect of the small obstacle appears in the coefficients of the PDE and not only in the initial data. The main ingredients of the proof are Lp − Lq estimates for the Stokes operator in an exterior domain, a priori estimates inspired on Kato’s fixed point method, energy estimates, renormalization and interpolation.


  1. 1.
    Batchelor G.K. (1999) An introduction to fluid dynamics, 2nd paperback edn. Cambridge Mathematical Library, Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Benfatto G., Esposito R., Pulvirenti M. (1985) Planar Navier–Stokes flow for singular initial data. Nonlinear Anal 9(6): 533–545MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chemin J.-Y. (1996) A remark on the inviscid limit for two-dimensional incompressible fluids. Comm. Part. Differ. Eq. 21, 1771–1779MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cottet G.-H. (1986) Équations de Navier–Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sci. Paris Sér. I Math. 303(4): 105–108MATHMathSciNetGoogle Scholar
  5. 5.
    Dan W., Shibata Y. (1999) On the L qL r estimates of the Stokes semigroup in a two-dimensional exterior domain. J. Math. Soc. Japan 51(1): 181–207MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dan W., Shibata Y. (1999) Remark on the L q-L estimate of the Stokes semigroup in a 2-dimensional exterior domain. Pac. J. Math. 189(2): 223–239MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Gallagher I., Gallay T. (2005) Uniqueness for the two-dimensional Navier–Stokes equation with a measure as initial vorticity. Math. Ann. 332, 287–327MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gallagher, I., Gallay, T., Lions, P.-L.: On the uniqueness of the solution of the two-dimensional Navier–Stokes equation with a Dirac mass as initial vorticity. ArXiV preprint math.AP/0410344 (2004)Google Scholar
  9. 9.
    Gallay T., Wayne C.E. (2002) Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on \(\mathbb{R}^{2}\). Arch. Ration. Mech. Anal. 163(3): 209–258MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gallay T., Wayne C.E. (2005) Global stability of vortex solutions of the two-dimensional Navier–Stokes equations. Comm. Math. Phys. 255, 97–129MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Giga Y. (1981) Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178, 297–329MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Giga Y., Miyakawa T., Osada H. (1988) Two-dimensional Navier–Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104(3): 223–250MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Iftimie D., Lopes Filho M.C., Nussenzveig Lopes H.J. (2003) Two dimensional incompressible ideal flow around a small obstacle. Comm. Part. Differ. Eqn. 28, 349–379MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kato T. (1994) The Navier–Stokes equation for an incompressible fluid in \(\mathbb{R}^{2}\) with a measure as the initial vorticity. Differ. Integral Eqn. 7(3–4): 949–966MATHGoogle Scholar
  15. 15.
    Kato T., Fujita H. (1962) On the nonstationary Navier–Stokes system. Rend. Sem. Mat. Univ. Padova 32, 243–260MathSciNetMATHGoogle Scholar
  16. 16.
    Kelliher J. (2004) The inviscid limit for two-dimensional incompressible fluids with unbounded vorticity. Math. Res. Lett. 11, 519–528MATHMathSciNetGoogle Scholar
  17. 17.
    Kozono H., Yamazaki M. (1995) Local and global unique solvability of the Navier–Stokes exterior problem with Cauchy data in the space L n,∞. Houst. J. Math. 21(4): 755–799MATHMathSciNetGoogle Scholar
  18. 18.
    Ladyzhenskaya O.(1969) The Mathematical Theory of Viscous Incompressible Flow, 2nd english edn. Gordon and Breach, New YorkMATHGoogle Scholar
  19. 19.
    Majda A. (1993) Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana Univ. Math. J. 42, 921–939MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Majda A., Bertozzi A. Vorticity and incompressible flow. In: Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002)Google Scholar
  21. 21.
    Maremonti P., Solonnikov V.A. (1997) On nonstationary Stokes problem in exterior domains. Ann. Sc. Norm. Super Pisa Cl. Sci. (4) 24(3): 395–449MathSciNetGoogle Scholar
  22. 22.
    Mazy’a, V., Nazarov, S., Plamenevskij, B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vols. 1 and 2. Birkhauser Verlag, Basel (2000)Google Scholar
  23. 23.
    Temam R. Navier–Stokes equations. Theory and numerical analysis. With an appendix by F. Thomasset. In: Studied in Mathematics and its Applications, vol. 2, 3rd edn. North-Holland Publishing Co., Amsterdam (1984)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • D. Iftimie
    • 1
  • M. C. Lopes Filho
    • 2
  • H. J. Nussenzveig Lopes
    • 2
  1. 1.Institut Camille JordanUniversité Claude Bernard Lyon 1Villeurbanne CedexFrance
  2. 2.Departamento de MatematicaIMECC-UNICAMPCampinasBrasil

Personalised recommendations