Advertisement

Mathematische Annalen

, Volume 334, Issue 4, pp 821–852 | Cite as

Nonembeddability theorems via Fourier analysis

  • Subhash Khot
  • Assaf NaorEmail author
Article

Abstract

Various new nonembeddability results (mainly into L 1) are proved via Fourier analysis. In particular, it is shown that the Edit Distance on {0,1} d has L 1 distortion Open image in new window We also give new lower bounds on the L 1 distortion of flat tori, quotients of the discrete hypercube under group actions, and the transportation cost (Earthmover) metric.

Mathematics Subject Classification (2000)

46B20 54E99 68W25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andoni, A., Deza, M., Gupta, A., Indyk, P., Raskhodnikova, S.: Lower bounds for embedding edit distance into normed spaces. In: SODA '03: Proceedings of the fourteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp 523–526. Society for Industrial and Applied Mathematics, 2003Google Scholar
  2. 2.
    Archer, A., Fakcharoenphol, J., Harrelson, C., Krauthgamer, R., Talwar, K., Tardos, E.: Approximate classification via earthmover metrics. In: SODA '04: Proceedings of the fifteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp 1079–1087. Society for Industrial and Applied Mathematics, 2004Google Scholar
  3. 3.
    Aumann, Y., Rabani, Y.: An O(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27(1), 291–301 (electronic), (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ball, K., Carlen, E.A., Lieb, E.H.: Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115(3), 463–482 (1994)CrossRefGoogle Scholar
  5. 5.
    Bar-Yossef, Z., Jayram, T.S., Krauthgamer, R., Kumar, R.: Approximating edit distance efficiently. In: 45th Annual IEEE Symposium on Foundations of Computer Science, pp 550–559. IEEE, Oct. 2004Google Scholar
  6. 6.
    Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena. Ann. Math. 162(2), 643–709 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bates, J., Johnson, W.B., Lindenstrauss, J., Preiss, D., Schechtman, G.: Affine approximation of Lipschitz functions and nonlinear quotients. Geom. Funct. Anal. 9(6), 1092–1127 (1999)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Batu, T., Ergun, F., Kilian, J., Magen, A., Raskhodnikova, S., Rubinfeld, R., Sami, R.: A sublinear algorithm for weakly approximating edit distance. In: STOC '03: Proceedings of the thirty-fifth annual ACM Symposium on Theory of Computing, pp 316–324. New York, NY, USA, ACM Press, 2003Google Scholar
  9. 9.
    Beckner, W.: Inequalities in Fourier analysis. Ann. of Math. (2) 102(1), 159–182 (1975)Google Scholar
  10. 10.
    Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. Vol. 1, volume 48 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2000Google Scholar
  11. 11.
    Beutelspacher, A., Rosenbaum, U.: Projective geometry: from foundations to applications. Cambridge University Press, Cambridge, 1998Google Scholar
  12. 12.
    Bonami, A.: Étude des coefficients de Fourier des fonctions de L p(G). Ann. Inst. Fourier (Grenoble), 20(fasc. 2), 335–402 (1971), (1970)Google Scholar
  13. 13.
    Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52(1–2), 46–52 (1985)Google Scholar
  14. 14.
    Bourgain, J.: The metrical interpretation of superreflexivity in Banach spaces. Israel J. Math. 56(2), 222–230 (1986)MathSciNetGoogle Scholar
  15. 15.
    Bourgain, J.: On the distributions of the Fourier spectrum of Boolean functions. Israel J. Math. 131, 269–276 (2002)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Bourgain, J., Kalai, G.: Influences of variables and threshold intervals under group symmetries. Geom. Funct. Anal. 7(3), 438–461 (1997)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Bourgain, J., Milman, V., Wolfson, H.: On type of metric spaces. Trans. Amer. Math. Soc. 294(1), 295–317 (1986)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999Google Scholar
  19. 19.
    Buser, P.: A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15(2), 213–230 (1982)Google Scholar
  20. 20.
    Charikar, M., Krauthgamer, R.: Embedding edit distance submetrics into ℓ1. Manuscript, 2005Google Scholar
  21. 21.
    Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: STOC '02: Proceedings of the thiry-fourth annual ACM Symposium on Theory of Computing, pp 380–388. ACM Press, 2002Google Scholar
  22. 22.
    Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pp 195–199. Princeton Univ. Press, Princeton, N. J., 1970Google Scholar
  23. 23.
    Chekuri, C., Khanna, S., Naor, J., Zosin, L.: Approximation algorithms for the metric labeling problem via a new linear programming formulation. In: SODA '01: Proceedings of the twelfth annual ACM-SIAM Symposium on Discrete Algorithms, pp 109–118. Society for Industrial and Applied Mathematics, 2001Google Scholar
  24. 24.
    Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In: SODA '02: Proceedings of the thirteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp 667–676. Society for Industrial and Applied Mathematics, 2002Google Scholar
  25. 25.
    Deza, M.M., Laurent, M.: Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 1997Google Scholar
  26. 26.
    Enflo, P.: On the nonexistence of uniform homeomorphisms between L p-spaces. Ark. Mat. 8, 103–105 (1969)MathSciNetGoogle Scholar
  27. 27.
    Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces, volume 152 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1999. Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael BatesGoogle Scholar
  28. 28.
    Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers, volume 37 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, second edition, 1987Google Scholar
  29. 29.
    Guibas, L.J., Rubner, Y., Tomassi, C.: The earth mover's distance as a metric for image retrieval. Int. J Comput. Vis. 40(2), 99–121 (2000)MathSciNetGoogle Scholar
  30. 30.
    Gusfield, D.: Algorithms on strings, trees, and sequences. Cambridge University Press, Cambridge, 1997. Computer science and computational biologyGoogle Scholar
  31. 31.
    Indyk, P.: Approximate nearest neighbor under edit distance via product metrics. In: SODA '04: Proceedings of the fifteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp 646–650. Society for Industrial and Applied Mathematics, 2004Google Scholar
  32. 32.
    Indyk, P., Thaper, N.: Fast image retrieval via embeddings. In: ICCV '03: Proceedings of the 3rd International Workshop on Statistical and Computational Theories of Vision, 2003Google Scholar
  33. 33.
    Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In: 29th Symposium on Foundations of Computer Science, pp 68–80 (1988)Google Scholar
  34. 34.
    Kassabov, M.: Symmetric groups and expander graphs. Manuscript, 2005. Available online at http://arxiv.org/abs/math.GR/0505624
  35. 35.
    Khot, S., Naor, A.: Nonembeddability theorems via Fourier analysis (with an appendix on quantitative estimates in Bourgain's noise sensitivity theorem). Available online at http://arxiv.org/abs/math/0510547
  36. 36.
    Khot, S., Vishnoi, N.: The unique games conjecture, integrality gap for cut problems, and embeddability of negative type metrics into L 1. In: 46th Annual IEEE Symposium on Foundations of Computer Science, pp 53–62. IEEE, Oct. 2005Google Scholar
  37. 37.
    Lagarias, J.C., Lenstra, H.W. JR., Schnorr, C.P.: Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10(4), 333–348 (1990)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Ledoux, M.: The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001Google Scholar
  39. 39.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Dokl. 10, 707–710 (1965)MathSciNetGoogle Scholar
  40. 40.
    Linial, N.: Finite metric spaces – combinatorics, geometry and algorithms. In: Proceedings of the International Congress of Mathematicians III, pp 573–586, 2002Google Scholar
  41. 41.
    Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)CrossRefMathSciNetGoogle Scholar
  42. 42.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. I, Vol. 16. North-Holland Publishing Co., Amsterdam, North-Holland Mathematical Library, 1977Google Scholar
  43. 43.
    Martinet, J.: Perfect lattices in Euclidean spaces, volume 327 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2003Google Scholar
  44. 44.
    Matoušek, J.: On embedding expanders into l p spaces. Israel J. Math. 102, 189–197 (1997)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Matoušek, J.: Open problems on embeddings of finite metric spaces. Available online at http://kam.mff.cuni.cz/~matousek/metrop.ps.gz, 2002
  46. 46.
    Mendel, M., Naor, A.: Euclidean quotients of finite metric spaces. Adv. Math. 189(2), 451–494 (2004)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Mendel, M., Naor, A.: Metric cotype. Manuscript, 2005. Available online at http://arxiv.org/abs/math.FA/0506201
  48. 48.
    Micciancio, D., Goldwasser, S.: Complexity of lattice problems. The Kluwer International Series in Engineering and Computer Science, 671. Kluwer Academic Publishers, Boston, MA, 2002. A cryptographic perspectiveGoogle Scholar
  49. 49.
    Milman, V.D., Schechtman, G.: Asymptotic theory of finite-dimensional normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With an appendix by M. GromovGoogle Scholar
  50. 50.
    Muthukrishnan, S., Sahinalp, S.C.: Approximate nearest neighbors and sequence comparison with block operations. In: STOC 2000: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp 416–424, 2000Google Scholar
  51. 51.
    Naor, A., Peres, Y., Schramm, O., Sheffield, S.: Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces. Manuscript, 2004. Available online at http://arxiv.org/abs/math.FA/0410422
  52. 52.
    Naor, A., Rabani, Y., Sinclair, A.: Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs. J. Funct. Anal. 227(2), 273–303 (2005)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Naor, A., Schechtman, G.: Remarks on non linear type and Pisier's inequality. J. Reine Angew. Math. 552, 213–236 (2002)zbMATHMathSciNetGoogle Scholar
  54. 54.
    Nash, J.: C 1 isometric imbeddings. Ann. of Math. (2) 60, 383–396 (1954)Google Scholar
  55. 55.
    Ostrovsky, R., Rabani, Y.: Low distortion embeddings for edit distance. In: STOC 2005: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp 218–224, 2005Google Scholar
  56. 56.
    Pisier, G.: Martingales with values in uniformly convex spaces. Israel J. Math. 20(3–4), 326–350 (1975)Google Scholar
  57. 57.
    Pisier, G.: Probabilistic methods in the geometry of Banach spaces. In: Probability and analysis (Varenna, 1985), volume 1206 of Lecture Notes in Math., pp 167–241. Springer, Berlin, 1986Google Scholar
  58. 58.
    Rozenman, E., Shalev, A., Wigderson, A.: A new family of Cayley expanders? In: STOC 2004: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp 445–454, 2004Google Scholar
  59. 59.
    Schechtman, G.: Lévy type inequality for a class of finite metric spaces. In: Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio, 1981), volume 939 of Lecture Notes in Math., pp 211–215. Springer, Berlin, 1982Google Scholar
  60. 60.
    Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32Google Scholar
  61. 61.
    Villani, C.: Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003Google Scholar
  62. 62.
    Zong, C.: From deep holes to free planes. Bull. Amer. Math. Soc. (N.S.) 39(4), 533–555 (electronic), 2002CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyUSA
  2. 2.Microsoft ResearchUSA

Personalised recommendations