Mathematische Annalen

, 335:109 | Cite as

Embedding of Cq and Rq into noncommutative Lp -spaces, 1≤p<q≤2



We prove that a quotient of a subspace of CppRp (1≤p<2) embeds completely isomorphically into a noncommutative Lp -space, where Cp and Rp are respectively the p-column and p-row Hilbertian operator spaces. We also represent Cq and Rq (p<q≤2) as quotients of subspaces of CppRp. Consequently, Cq and Rq embed completely isomorphically into a noncommutative Lp (M). We further show that the underlying von Neumann algebra M cannot be semifinite.

Mathematics subject classification (2000)

Primary 46L07 Secondary 47L25 


embedding p-column and p-row spaces noncommutative Lp-spaces interpolation 


  1. 1.
    Bergh, J., Löfström, J.: Interpolation spaces. Springer-Verlag, Berlin, 1976Google Scholar
  2. 2.
    Effros, Ed., Ruan, Z-J.: Operator spaces, vol. 23 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York, 2000Google Scholar
  3. 3.
    Haagerup, U.: L p-spaces associated with an arbitrary von Neumann algebra. in: Algèbres d'opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), volume 274 of Colloq. Internat. CNRS, Paris, 1979, pp. 175–184 CNRSGoogle Scholar
  4. 4.
    Junge, M.: Embedding of the operator space OH and the logarithmic `little Grothendieck inequality'. Invent. Math. 161, 225–286 (2005)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Junge, M.: Embedding of OH in the predual of the hyperfinite III1 von Neumann algebra. In preparationGoogle Scholar
  6. 6.
    Junge, M.: Embeddings of non-commutative L p-spaces into non-commutative L 1-spaces, 1<p<2. Geom. Funct. Anal. 10, 389–406 (2000)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Junge, M. Personal communicationGoogle Scholar
  8. 8.
    Junge, M., Parcet J., Xu, Q.: Rosentahl type inequalities for free chaos. In preparationGoogle Scholar
  9. 9.
    Junge, M., Xu, Q.: Noncommutative Burkholder/Rosenthal inequalities. Ann. Probab. 31(2), 948–995 (2003)MathSciNetGoogle Scholar
  10. 10.
    Junge, M., Xu, Q.: Noncommutative Burkholder/Rosenthal inequalities: Applications. To appearGoogle Scholar
  11. 11.
    Junge, M., Xu, Q.: Quantum probabilistic tools in operator spaces. In preparationGoogle Scholar
  12. 12.
    Kosaki, H.: Applications of the complex interpolation method to a von Neumann algebra: noncommutative L p-spaces. J. Funct. Anal. 56(1), 29–78 (1984)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Pisier, G.: Introduction to operator space theory, volume 294 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003Google Scholar
  14. 14.
    Pisier, G.: Non-commutative vector valued L p-spaces and completely p-summing maps. Astérisque (247), (1998)Google Scholar
  15. 15.
    Pisier, G.: The operator Hilbert space OH, complex interpolation and tensor norms. Mem. Amer. Math. Soc. 122(585), (1996)Google Scholar
  16. 16.
    Pisier, G.: Completely bounded maps into certain Hilbertian operator spaces. Int. Math. Res. Not. 74, 3983–4018 (2004)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Pisier, G. Operator Hilbert space OH and type III von Neumann algebras. Bull. London Math. Soc. 36, 455–459 (2004)Google Scholar
  18. 18.
    Pisier, G., Shlyakhtenko, D.: Grothendieck's theorem for operator spaces. Invent. Math. 150(1), 185–217 (2002)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Pusz, W., Woronowicz, S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Mathematical Phys. 8, 159–170 (1975)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Shlyakhtenko, D.: Free quasi-free states. Pacific J. Math. 177(2), 329–368 (1997)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Speicher, R.: A new example of ``independence'' and ``white noise''. Probab. Theory Related Fields 84, 141–159 (1990)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Terp, M.: L p-spaces associated with von Neumann algebras. Notes, Math. Institute, Copenhagen Univ. 1981Google Scholar
  23. 23.
    Terp, M.: Interpolation spaces between a von Neumann algebra and its predual. J. Operator Theory 8, 327–360 (1982)MATHMathSciNetGoogle Scholar
  24. 24.
    Xu, Q.: Operator space Grothendieck inequalities for noncommutative L p-spaces. Duke Math. J. 131, 525–574 (2006)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Xu, Q.: A description of (C p[L p(M)], R p[L p(M)])θ. Proc. Edinburgh Math. Soc. 135, 1073–1083 (2005)MATHGoogle Scholar
  26. 26.
    Xu, Q.: Interpolation of operator spaces. J. Funct. Anal. 139(2), 500–539 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesUniversité de Franche-ComtéBesançon, cedexFrance

Personalised recommendations