Mathematische Annalen

, Volume 333, Issue 1, pp 29–43

Integrability of induction cocycles for Kac-Moody groups



We prove that whenever a Kac-Moody group over a finite field is a lattice of its buildings, it has a fundamental domain with respect to which the induction cocycle is Lp for any p ∈ [1;+∞). The proof uses elementary counting arguments for root group actions on buildings. The applications are the possibility to apply some lattice superrigidity, and the normal subgroup property for Kac-Moody lattices.

Mathematics Subject Classification (2000)

22F50 22E20 51E24 53C24 22E40 17B67 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institut Camille Jordan, UMR 5208-CNRS / Lyon 1Université de Lyon 1-Claude BernardVilleurbanne CedexFrance

Personalised recommendations