Mathematische Annalen

, Volume 332, Issue 4, pp 901–936 | Cite as

Equivalences of twisted K3 surfaces

Article

Abstract

We prove that two derived equivalent twisted K3 surfaces have isomorphic periods. The converse is shown for K3 surfaces with large Picard number. It is also shown that all possible twisted derived equivalences between arbitrary twisted K3 surfaces form a subgroup of the group of all orthogonal transformations of the cohomology of a K3 surface.

The passage from twisted derived equivalences to an action on the cohomology is made possible by twisted Chern characters that will be introduced for arbitrary smooth projective varieties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beauville, A., Bourguignon, J.-P., Demazure, M. (eds.): Géométrie des surfaces K3: modules et périodes. Séminaires Palaiseau. Astérisque 126, 1985Google Scholar
  2. 2.
    Atiyah, M., Hirzebruch, F.: Riemann–Roch theorems for differentiable manifolds. Bull. AMS 65, 276–281 (1959)Google Scholar
  3. 3.
    Bondal, A., Orlov, D.: Reconstruction of a variety from the derived category and groups of autoequivalences. alg-geom9705002Google Scholar
  4. 4.
    Borcea, C.: Diffeomorphisms of a K3 surface. Math. Ann. 275, 1–4 (1986)Google Scholar
  5. 5.
    Bridgeland, T., Maciocia, A.: Complex surfaces with equivalent derived categories. Math. Z. 236, 677–697 (2001)Google Scholar
  6. 6.
    Bridgeland, T.: Equivalences of Triangulated Categories and Fourier–Mukai Transforms. Bull. London Math. Soc. 31, 25–34 (1999)Google Scholar
  7. 7.
    Căldăraru, A.: Derived categories of twisted sheaves on Calabi-Yau manifolds. Ph.-D. thesis Cornell, 2000Google Scholar
  8. 8.
    Căldăraru, A.: Derived categories of twisted sheaves on elliptic threefolds. J. Reine Angew. Math. 544, 161–179 (2002)Google Scholar
  9. 9.
    Căldăraru, A.: Non-fine moduli spaces of sheaves on K3 surfaces. Int. Math. Res. Not. 20, 1027–1056 (2002)Google Scholar
  10. 10.
    Căldăraru, A.: The Mukai pairing I: the Hochschild pairing. Preprint, 2003Google Scholar
  11. 11.
    D’Agnolo, A., Polesello, P.: Stacks of twisted modules and integral transforms. Geometric aspects of Dwork’s theory (a collection of articles in memory of Bernard Dwork), A. Adolphson, F. Baldassarri, P. Berthelot, N. Kats, F. Loeser (eds.), Walter de Gruyer, Berlin, 2004, pp. 461–505Google Scholar
  12. 12.
    Donagi, R., Pantev, T.: Torus fibrations, gerbes, and duality. math.AG/0306213Google Scholar
  13. 13.
    Donaldson, S.: Polynomial invariants for smooth four-manifolds. Top. 29, 257–315 (1990)Google Scholar
  14. 14.
    Friedman, R., Morgan, J.: Smooth four-manifolds and complex surfaces. Erg. Math. 27, 1994, SpringerGoogle Scholar
  15. 15.
    Gualtieri, M.: Generalized Complex Geometry. math.DG/0401221.Ph.D.-thesis OxfordGoogle Scholar
  16. 16.
    Hitchin, N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54, 281–308 (2003)Google Scholar
  17. 17.
    Hosono, S., Lian, B.H., Oguiso, K., Yau, S.-T.: Autoequivalences of derived category of a K3 surface and monodromy transformations. J. Alg. Geom. 13, 513–545 (2004)Google Scholar
  18. 18.
    Hosono, S., Lian, B.H., Oguiso, K., Yau, S.-T.: Fourier–Mukai numbers of a K3 surface. CRM Proc. and Lect. Notes 38, 2004Google Scholar
  19. 19.
    Huybrechts, D., Lehn, M.: The geometry of moduli spaces of sheaves. Aspects in Math. E 31. Vieweg, 1997Google Scholar
  20. 20.
    Huybrechts, D.: Generalized Calabi–Yau structures, K3 surfaces, and B-fields. Int. J. Math. 16, 13–36 (2005)Google Scholar
  21. 21.
    Huybrechts, D., Stellari, P.: Proof of Căldăraru’s conjecture. An appendix to a paper by Yoshioka. submitted to: The 13th MSJ Inter. Research Inst. Moduli Spaces and Arithmetic Geometry. Adv. Stud. Pure Math. math.AG/0411541Google Scholar
  22. 22.
    Khalid, M.: On K3 correspondences. math.AG/0402314Google Scholar
  23. 23.
    Kodaira, K.: On the structure of compact complex analytique surfaces I. Am. J. Math. 86, 751–798 (1964)Google Scholar
  24. 24.
    Morrison, D.: On K3 surfaces with large Picard number. Invent. Math. 75, 105–121 (1984)Google Scholar
  25. 25.
    Mukai, S.: On the moduli space of bundles on K3 surfaces, I. In: Vector Bundles on Algebraic Varieties, Bombay, 1984, 341–413Google Scholar
  26. 26.
    Mukai, S.: Vector bundles on a K3 surface. Proc. of the ICM Vol II (Beijing 2002) 495–502. math.AG/0304303Google Scholar
  27. 27.
    Nikulin, V.V.: Integral symmetric bilinear forms and some of their applications. Math USSR Izvestija 14, 103–167 (1980)Google Scholar
  28. 28.
    Oguiso, K.: K3 surfaces via almost-primes. Math. Research Letters 9, 47–63 (2002)Google Scholar
  29. 29.
    Orlov, D.: Equivalences of derived categories and K3 surfaces. J. Math. Sci. 84, 1361–1381 (1997)Google Scholar
  30. 30.
    Orlov, D.: Derived category of coherent sheaves and equivalences between them. Russ. Math. Surveys 58(3), 511–591 (2003)Google Scholar
  31. 31.
    Ploog, D.: Groups of equivalences of derived categories of smooth projective varieties. PhD-thesis Berlin, 2004Google Scholar
  32. 32.
    Stellari, P.: Some remarks about the FM-partners of K3 surfaces with Picard number 1 and 2. Geom. Dedicata 108, 1–13 (2004)MathSciNetGoogle Scholar
  33. 33.
    Szendrői, B.: Diffeomorphisms and families of Fourier–Mukai transforms in mirror symmetry. Applications of Alg. Geom. to Coding Theory, Phys. and Comp. NATO Science Series. Kluwer, 2001, pp. 317–337Google Scholar
  34. 34.
    Wall, C.T.C.: On the orthogonal groups of unimodular quadratic forms II. J. Reine Angew. Math. 213, 122–136 (1964)Google Scholar
  35. 35.
    Yoshioka, K.: Moduli spaces of twisted sheaves on a projective variety. submitted to: The 13th MSJ Inter. Research Inst. Moduli Spaces and Arithmetic Geometry. Adv. Stud. Pure Math. math.AG/0411538Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität BonnBonnGermany
  2. 2.Department of MathematicsUniversità degli Studi di MilanoMilanItaly

Personalised recommendations