Mathematische Annalen

, Volume 333, Issue 1, pp 1–27 | Cite as

Counting alternating knots by genus

Article

Abstract

It is shown that the number of alternating knots of given genus g>1 grows as a polynomial of degree 6g−4 in the crossing number. The leading coefficient of the polynomial, which depends on the parity of the crossing number, is related to planar trivalent graphs with a Bieulerian path. The rate of growth of the number of such graphs is estimated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacher, R., Vdovina, A.: Counting 1-vertex triangulations of oriented surfaces. Discrete Mathematics 246(1–3), 13–27 (2002)Google Scholar
  2. 2.
    Bar-Natan, D.: Lie algebras and the four color theorem. Combinatorica 17(1), 43–52 (1997)Google Scholar
  3. 3.
    Bar-Natan, D.: On the Vassiliev knot invariants. Topology 34(2), 423–472 (1995)Google Scholar
  4. 4.
    Bianchi, G., Cori, R.: Colorings of hypermaps and a conjecture of Brenner and Lyndon. Pacific J. Math. 110(1), 41–48 (1984)Google Scholar
  5. 5.
    Bott, R., Taubes, C.: On the self-linking of knots. Jour. Math. Phys. 35(10), 5247–5287 (1994)Google Scholar
  6. 6.
    Brenner, J.L., Lyndon, R.C.: Permutations and cubic graphs. Pacific Journal of Math. 104, 285–315 (1983)Google Scholar
  7. 7.
    Comerford, L., Edmunds, C.: Products of commutators and products of squares in a free group. Int. J. of Algebra and Comput. 4(3) (1994), 469–480.Google Scholar
  8. 8.
    Conway, J.H.: On enumeration of knots and links. In: Computational Problems in abstract algebra J. Leech (ed.), Pergamon Press, 1969, pp. 329–358Google Scholar
  9. 9.
    Crowell, R.: Genus of alternating link types. Ann. of Math. 69(2), 258–275 (1959)Google Scholar
  10. 10.
    Culler, M.: Using surfaces to solve equations in free groups. Topology 20(2), 133–145 (1981)Google Scholar
  11. 11.
    Handbook of Combinatorics Vol. II P.L. Graham, M. Grötschel and L. Lovácz (eds.), North-Holland, 1995Google Scholar
  12. 12.
    Kauffman, L.H.: State models and the Jones polynomial. Topology 26, 395–407 (1987)Google Scholar
  13. 13.
    Menasco, W.W.: Closed incompressible surfaces in alternating knot and link complements. Topology 23(1), 37–44 (1986)Google Scholar
  14. 14.
    Menasco, W.W., Thistlethwaite, M.B.: The classification of alternating links. Ann. of Math. 138(1), 113–171 (1993)Google Scholar
  15. 15.
    Mosher, L.: A User’s Guide to the Mapping Class Group: Once Punctured Surfaces. DIMACS Series 25, (1994)Google Scholar
  16. 16.
    Murasugi, K.: On the genus of the alternating knot. I, II, J. Math. Soc. Japan 10, 94–105, 235–248 (1958)Google Scholar
  17. 17.
    Murasugi, K.: Jones polynomial and classical conjectures in knot theory. Topology 26, 187–194 (1987)Google Scholar
  18. 18.
    Nakamura, T.: Positive alternating links are positively alternating. J. Knot Theory Ramifications 9(1), 107–112 (2000)Google Scholar
  19. 19.
    Polyak, M., Viro, O.: Gauss diagram formulas for Vassiliev invariants. Int. Math. Res. Notes 11, 445–454 (1994)Google Scholar
  20. 20.
    Rolfsen, D.: Knots and links. Publish or Perish Inc., Mathematical Lecture Series 7, Berkeley CA 1976Google Scholar
  21. 21.
    Stoimenow, A.: Knots of genus one. Proc. Amer. Math. Soc. 129(7), 2141–2156 (2001)Google Scholar
  22. 22.
    Stoimenow, A., Tchernov, V., Vdovina, A.: The canonical genus of a classical and virtual knot. Geom. Dedicata 95, 215–225 (2002)Google Scholar
  23. 23.
    Thistlethwaite, M.B.: A spanning tree expansion for the Jones polynomial. Topology 26, 297–309 (1987)Google Scholar
  24. 24.
    Tutte, W.T.: A census of planar triangulations. Canad. J. Math. 14, 21–38 (1962)Google Scholar
  25. 25.
    Vdovina, A.A.: Constructing Orientable Wicks Forms and Estimation of Their Number. Communications in Algebra 23(9), 3205–3222 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesUniversity of TokyoTokyoJapan
  2. 2.School of Mathematics and StatisticsUniversity of NewcastleNewcastle upon TyneUK

Personalised recommendations