Mathematische Annalen

, Volume 332, Issue 4, pp 823–842 | Cite as

Explicit determination of the Picard group of moduli spaces of semistable G-bundles on curves

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, F.: Lectures on Lie Groups. W. A. Benjamin, Inc., 1969Google Scholar
  2. 2.
    Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of Algebraic Curves. Springer-Verlag, 1985Google Scholar
  3. 3.
    Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys. 164, 385–419 (1994)Google Scholar
  4. 4.
    Beauville, A., Laszlo, Y., Sorger, C.: The Picard group of the moduli of G–bundles on a curve. Compositio Math. 112, 183–216 (1998)Google Scholar
  5. 5.
    Beltrametti, M., Robbiano, L.: Introduction to the theory of weighted projective spaces. Expo. Math. 4, 111–162 (1986)Google Scholar
  6. 6.
    Bernshtein, I.N., Shvartsman, O.V.: Chevalley’s theorem for complex crystallographic Coxeter groups. Funct. Anal. Appl. 12, 308–310 (1978)Google Scholar
  7. 7.
    Bourbaki, N.: Groupes et Algèbres de Lie, Chap. 4–6. Masson, Paris, 1981Google Scholar
  8. 8.
    Drezet, J.–M., Narasimhan, M.S.: Groupe de Picard des variétés de modules de fibrés semi–stables sur les courbes algébriques. Invent. Math. 97, 53–94 (1989)Google Scholar
  9. 9.
    Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Am. Math. Soc. Transl. (Ser. II) 6, 111–244 (1957)Google Scholar
  10. 10.
    Faltings, G.: A proof for the Verlinde formula. J. Alg. Geom. 3, 347–374 (1994)Google Scholar
  11. 11.
    Friedman, R., Morgan, J.W., Witten, E.: Principal G-bundles over elliptic curves. Mathematical Research Letters 5, 97–118 (1998)Google Scholar
  12. 12.
    Fulton, W.: Intersection Theory. Springer, Berlin Heidelberg, 1998Google Scholar
  13. 13.
    Knudsen, F., Mumford, D.: The projectivity of the moduli space of stable curves I: preliminaries on “det” and “div”. Math. Scand. 39, 19–55 (1976)Google Scholar
  14. 14.
    Kumar, S.: Infinite Grassmannians and moduli spaces of G–bundles. In: Vector Bundles on Curves - New Directions, Lecture Notes in Mathematics 1649, pp. 1–49, Springer, Berlin Heidelberg, 1997Google Scholar
  15. 15.
    Kumar, S.: Kac-Moody Groups, their Flag Varieties and Representation Theory. Progress in Mathematics vol. 204, Birkhäuser, 2002Google Scholar
  16. 16.
    Kumar, S., Narasimhan, M.S.: Picard group of the moduli spaces of G–bundles. Math. Annalen 308, 155–173 (1997)Google Scholar
  17. 17.
    Kumar, S., Narasimhan, M.S., Ramanathan, A.: Infinite Grassmannians and moduli spaces of G–bundles. Math. Annalen 300, 41–75 (1994)Google Scholar
  18. 18.
    Lang, S.: Introduction to Arakelov Theory. Springer, Berlin Heidelberg, 1988Google Scholar
  19. 19.
    Laszlo, Y.: About G-bundles over elliptic curves. Ann. Inst. Fourier, Grenoble 48, 413–424 (1998)Google Scholar
  20. 20.
    Laszlo, Y., Sorger, C.: The line bundles on the moduli of parabolic G–bundles over curves and their sections. Ann. Scient. Éc. Norm. Sup. 30, 499–525 (1997)Google Scholar
  21. 21.
    Looijenga, E.: Root systems and elliptic curves. Invent. Math. 38, 17–32 (1976)Google Scholar
  22. 22.
    Milne, J.S.: Chap. VII–Jacobian varieties. In: Arithmetic Geometry, Cornell, G., et al., (eds.), Springer, Berlin Heidelberg 1986, 167–212Google Scholar
  23. 23.
    Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Annals of Mathematics Studies vol. 76, Princeton University Press, 1974Google Scholar
  24. 24.
    Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. 82, 540–567 (1965)Google Scholar
  25. 25.
    Narasimhan, R.: Compact Riemann Surfaces. Birkhäuser Verlag, 1992Google Scholar
  26. 26.
    Ramanan, S., Ramanathan, A.: Some remarks on the instability flag. Tôhoku Math. J. 36, 269–291 (1984)Google Scholar
  27. 27.
    Ramanathan, A.: Stable principal bundles on a compact Riemann surface- Construction of moduli space. Thesis, University of Bombay, 1976Google Scholar
  28. 28.
    Ramanathan, A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129–152 (1975)Google Scholar
  29. 29.
    Sorger, C.: On moduli of G-bundles on a curve for exceptional G. Ann. Scient. Éc. Norm. Sup. 32, 127–133 (1999)Google Scholar
  30. 30.
    Szenes, A.: The combinatorics of the Verlinde formulas In: Vector Bundles in Algebraic Geometry, Hitchin, N.J., et al., (eds.), Cambridge University Press, 1995Google Scholar
  31. 31.
    Teleman, C.: Lie algebra cohomology and the fusion rules. Commun. Math. Phys. 173, 265–311 (1995)Google Scholar
  32. 32.
    Teleman, C.: Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve. Invent. Math. 134, 1–57 (1998)Google Scholar
  33. 33.
    Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Stud. Pure Math. 19, 459–565 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations