Advertisement

Mathematische Annalen

, Volume 332, Issue 4, pp 823–842 | Cite as

Explicit determination of the Picard group of moduli spaces of semistable G-bundles on curves

  • Arzu Boysal
  • Shrawan Kumar
Article

Keywords

Modulus Space Picard Group Explicit Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, F.: Lectures on Lie Groups. W. A. Benjamin, Inc., 1969Google Scholar
  2. 2.
    Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of Algebraic Curves. Springer-Verlag, 1985Google Scholar
  3. 3.
    Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys. 164, 385–419 (1994)Google Scholar
  4. 4.
    Beauville, A., Laszlo, Y., Sorger, C.: The Picard group of the moduli of G–bundles on a curve. Compositio Math. 112, 183–216 (1998)Google Scholar
  5. 5.
    Beltrametti, M., Robbiano, L.: Introduction to the theory of weighted projective spaces. Expo. Math. 4, 111–162 (1986)Google Scholar
  6. 6.
    Bernshtein, I.N., Shvartsman, O.V.: Chevalley’s theorem for complex crystallographic Coxeter groups. Funct. Anal. Appl. 12, 308–310 (1978)Google Scholar
  7. 7.
    Bourbaki, N.: Groupes et Algèbres de Lie, Chap. 4–6. Masson, Paris, 1981Google Scholar
  8. 8.
    Drezet, J.–M., Narasimhan, M.S.: Groupe de Picard des variétés de modules de fibrés semi–stables sur les courbes algébriques. Invent. Math. 97, 53–94 (1989)Google Scholar
  9. 9.
    Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Am. Math. Soc. Transl. (Ser. II) 6, 111–244 (1957)Google Scholar
  10. 10.
    Faltings, G.: A proof for the Verlinde formula. J. Alg. Geom. 3, 347–374 (1994)Google Scholar
  11. 11.
    Friedman, R., Morgan, J.W., Witten, E.: Principal G-bundles over elliptic curves. Mathematical Research Letters 5, 97–118 (1998)Google Scholar
  12. 12.
    Fulton, W.: Intersection Theory. Springer, Berlin Heidelberg, 1998Google Scholar
  13. 13.
    Knudsen, F., Mumford, D.: The projectivity of the moduli space of stable curves I: preliminaries on “det” and “div”. Math. Scand. 39, 19–55 (1976)Google Scholar
  14. 14.
    Kumar, S.: Infinite Grassmannians and moduli spaces of G–bundles. In: Vector Bundles on Curves - New Directions, Lecture Notes in Mathematics 1649, pp. 1–49, Springer, Berlin Heidelberg, 1997Google Scholar
  15. 15.
    Kumar, S.: Kac-Moody Groups, their Flag Varieties and Representation Theory. Progress in Mathematics vol. 204, Birkhäuser, 2002Google Scholar
  16. 16.
    Kumar, S., Narasimhan, M.S.: Picard group of the moduli spaces of G–bundles. Math. Annalen 308, 155–173 (1997)Google Scholar
  17. 17.
    Kumar, S., Narasimhan, M.S., Ramanathan, A.: Infinite Grassmannians and moduli spaces of G–bundles. Math. Annalen 300, 41–75 (1994)Google Scholar
  18. 18.
    Lang, S.: Introduction to Arakelov Theory. Springer, Berlin Heidelberg, 1988Google Scholar
  19. 19.
    Laszlo, Y.: About G-bundles over elliptic curves. Ann. Inst. Fourier, Grenoble 48, 413–424 (1998)Google Scholar
  20. 20.
    Laszlo, Y., Sorger, C.: The line bundles on the moduli of parabolic G–bundles over curves and their sections. Ann. Scient. Éc. Norm. Sup. 30, 499–525 (1997)Google Scholar
  21. 21.
    Looijenga, E.: Root systems and elliptic curves. Invent. Math. 38, 17–32 (1976)Google Scholar
  22. 22.
    Milne, J.S.: Chap. VII–Jacobian varieties. In: Arithmetic Geometry, Cornell, G., et al., (eds.), Springer, Berlin Heidelberg 1986, 167–212Google Scholar
  23. 23.
    Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Annals of Mathematics Studies vol. 76, Princeton University Press, 1974Google Scholar
  24. 24.
    Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. 82, 540–567 (1965)Google Scholar
  25. 25.
    Narasimhan, R.: Compact Riemann Surfaces. Birkhäuser Verlag, 1992Google Scholar
  26. 26.
    Ramanan, S., Ramanathan, A.: Some remarks on the instability flag. Tôhoku Math. J. 36, 269–291 (1984)Google Scholar
  27. 27.
    Ramanathan, A.: Stable principal bundles on a compact Riemann surface- Construction of moduli space. Thesis, University of Bombay, 1976Google Scholar
  28. 28.
    Ramanathan, A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129–152 (1975)Google Scholar
  29. 29.
    Sorger, C.: On moduli of G-bundles on a curve for exceptional G. Ann. Scient. Éc. Norm. Sup. 32, 127–133 (1999)Google Scholar
  30. 30.
    Szenes, A.: The combinatorics of the Verlinde formulas In: Vector Bundles in Algebraic Geometry, Hitchin, N.J., et al., (eds.), Cambridge University Press, 1995Google Scholar
  31. 31.
    Teleman, C.: Lie algebra cohomology and the fusion rules. Commun. Math. Phys. 173, 265–311 (1995)Google Scholar
  32. 32.
    Teleman, C.: Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve. Invent. Math. 134, 1–57 (1998)Google Scholar
  33. 33.
    Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Stud. Pure Math. 19, 459–565 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations