Advertisement

Mathematische Annalen

, Volume 332, Issue 3, pp 645–665 | Cite as

Non-connected toric Hilbert schemes

  • Francisco Santos
Article

Abstract.

We construct small (50 and 26 points, respectively) point sets in dimension 5 whose graphs of triangulations are not connected. These examples improve our construction in J. Amer. Math. Soc. 13:3 (2000), 611–637 not only in size, but also in that the associated toric Hilbert schemes are not connected either, a question left open in that article. Additionally, the point sets can easily be put into convex position, providing examples of 5-dimensional polytopes with non-connected graph of triangulations.

Keywords

Hilbert Scheme Convex Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexeev, V.: Complete moduli in the presence of semiabelian group action. Ann. Math. 155(3), 611–708 (2002)Google Scholar
  2. 2.
    Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Computing in Euclidean Geometry, D.Z. Du, F.K.H. Wang (eds.), World Scientific, 1995, pp. 47–123Google Scholar
  3. 3.
    Billera, L., Kapranov, M.M., Sturmfels, B.: Cellular strings on polytopes. Proc. Am. Math. Soc. 122(2), 549–555 (1994)Google Scholar
  4. 4.
    Björner, A., Lutz, F.H.: Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere. Experiment. Math. 9, 275–289 (2000)Google Scholar
  5. 5.
    de Loera, J.A., Rambau, J., Santos, F.: Triangulations of polyhedra and point sets. In preparationGoogle Scholar
  6. 6.
    Edelsbrunner, H., Shah, N.R.: Incremental topological flipping works for regular triangulations. Algorithmica 15, 223–241 (1996)CrossRefGoogle Scholar
  7. 7.
    Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston, 1994Google Scholar
  8. 8.
    Haiman, M., Sturmfels, B.: Multigraded Hilbert Schemes. J. Algebraic Geom. 13, 725–769 (2004)Google Scholar
  9. 9.
    Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom. 22, 333–346 (1999)Google Scholar
  10. 10.
    Itenberg, I., Roy, M.-F.: Interactions between real algebraic geometry and discrete and computational geometry. In: Advances in discrete and computational geometry. Proceedings of the 1996 AMS-IMS-SIAM joint summer research conference on discrete and computational geometry: ten years later, Bernard Chazelle et al. (eds.), Contemp. Math. 223, Am. Math. Soc., Providence, 1999, pp. 217–236Google Scholar
  11. 11.
    Kapranov, M.M., Sturmfels, B., Zelevinsky, A.V.: Quotients of toric varieties. Math. Ann. 290, 643–655 (1991)CrossRefGoogle Scholar
  12. 12.
    Lawson, C.L.: Software for C1-interpolation. In: Mathematical Software III, John Rice (ed.), Academic Press, New York, 1977Google Scholar
  13. 13.
    Lee, C.W.: Subdivisions and triangulations of polytopes. In: Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O’Rourke (eds.), CRC Press, New York, 1997, pp. 271–290Google Scholar
  14. 14.
    Maclagan, D., Thomas, R.: Combinatorics of the Toric Hilbert Scheme. Discrete Comput. Geom. 27, 249–264 (2002)Google Scholar
  15. 15.
    Peeva, I., Stillman, M.: Toric Hilbert schemes. Duke Mathematical Journal 111, 419–449 (2002)CrossRefGoogle Scholar
  16. 16.
    Reiner, V.: The generalized Baues problem. In: New Perspectives in Algebraic Combinatorics, L.J. Billera et al. (eds.), MSRI publications 38, 1999, Cambridge University Press, pp. 293–336Google Scholar
  17. 17.
    Santos, F.: A point configuration whose space of triangulations is disconnected. J. Am. Math. Soc. 13(3), 611–637 (2000)CrossRefGoogle Scholar
  18. 18.
    Santos, F.: Triangulations with very few geometric bistellar neighbors. Discrete Comput. Geom. 23, 15–33 (2000)Google Scholar
  19. 19.
    Santos, F.: Triangulations of Oriented Matroids. Mem. Am. Math. Soc. Volume 156, number 741. American Mathematical Society, 2002Google Scholar
  20. 20.
    Santos, F.: On the refinements of a polyhedral subdivision. Collect. Math. 52(3), 231–256 (2001)Google Scholar
  21. 21.
    Stillman, M., Sturmfels, B., Thomas, R.: Algorithms for the toric Hilbert scheme. In: Computations in Algebraic Geometry using Macaulay 2, D. Eisenbud et al. (eds.), Algorithms and Computation in Mathematics Vol 8, Springer, 2002, pp. 179–213Google Scholar
  22. 22.
    Sturmfels, B.: Gröbner bases and convex polytopes. University Series Lectures 8, American Mathematical Society, Providence, 1995Google Scholar
  23. 23.
    Sturmfels, B.: The geometry of A-graded algebras. Technical Report October 1994, math.AG/9410032Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain

Personalised recommendations